BSM PHYSICS AT THE LHC LECTURE 2

S. Dawson, BNL

Trisep, June, 2021

Please send questions or corrections to dawson@bnl.gov

Slides posted at: <u>Lecture_2.pdf</u>

NEW SIGNALS IN hh PRODUCTION

- Can produce 2 different Higgs (generic in extended Higgs Models)
- BSM models with extra Higgs can have interesting di-Higgs signals

TODAY

- 2HDM
- MSSM
- Vector-like top quark
- Precision measurements and EFTs

It's a lot, so the bottom line: there are a lot of possibilities and we have to look not just at the LHC, but in low energy measurements, B physics, and other measurements

2HDM

- Model has 2 Higgs doublets with vevs, v_1 and v_2 , tan $\beta = v_2/v_1$
 - 2HDM has 8 degrees of freedom: 3 become longitudinal degrees of freedom of W[±], Z
- 5 degrees of freedom left: h, H (neutral), A (pseudoscalar), H[±]
- \bullet Diagonalize neutral Higgs mass matrix with angle α

 $\sin 2\alpha = -\sin 2\beta \left(\frac{M_H^2 + m_h^2}{M_H^2 - m_h^2}\right)$

2HDM

PROS:

- No reason why SM should have only I Higgs doublet
- 2 Higgs doublets are just as good as 1
- Lots of new phenomenology (especially with charged H⁺)
- FCNC from Higgs exchange easy to avoid in any model with doublets
- MSSM follows naturally from 2HDM
- Try to explain flavor anomalies in B sector CONS:
- No predictions for masses/coupling constants

GENERAL 2 HIGGS DOUBLET MODEL

• 6 free parameters, plus a phase

$$V(H_{1}, H_{2}) = \lambda_{1}(H_{1}^{+}H_{1} - v_{1}^{2})^{2} + \lambda_{2}(H_{2}^{+}H_{2} - v_{2}^{2})^{2} + \lambda_{3}[(H_{1}^{+}H_{1} - v_{1}^{2}) + (H_{2}^{+}H_{2} - v_{2}^{2})]^{2} + \lambda_{4}[(H_{1}^{+}H_{1})(H_{2}^{+}H_{2}) - (H_{1}^{+}H_{2})(H_{2}^{+}H_{1})] + \lambda_{5}[\operatorname{Re}(H_{1}^{+}H_{2}) - v_{1}v_{2}\cos\xi]^{2} + \lambda_{6}[\operatorname{Im}(H_{1}^{+}H_{2}) - v_{1}v_{2}\sin\xi]^{2}$$

• W and Z masses just like in Standard Model
$$M_{W}^{2} = \frac{g^{2}(v_{1}^{2} + v_{2}^{2})}{2}$$

W and Z masses just like in Standard Model

•
$$\rho$$
 parameter: $\rho = \frac{M_W}{M_Z \cos \theta_W} = 1$

 ρ =1 for any number of Higgs doublets or singlets

GAUGE BOSON COUPLINGS TO HIGGS IN 2HDM

- Neutral Higgs: h and H
- Couplings to gauge bosons fixed by gauge symmetry
- $(g_{hVV})^2 + (g_{HVV})^2 = (g_{hVV})^2 (SM)$
- Vector boson fusion and Vh production always suppressed in 2HDM

hVV couplings go to SM couplings when $\cos(\beta - \alpha) \rightarrow 0$

$$\frac{g_{hVV}}{g_{h,smVV}} = \sin(\beta - \alpha)$$
$$\frac{g_{HVV}}{g_{h,smVV}} = \cos(\beta - \alpha)$$

HIGGS COUPLINGS IN 2HDM

- 2 Higgs doublet models with no tree level FCNC
 - Parameters are α (mixing in neutral sector), λ_{5} , tan $\beta,\,M_{\text{h}},\,M_{\text{H}},\,M_{\text{A}},\,M_{\text{H}+}$
 - 4 possibilities for Higgs coupling assignments

$$L = -g_{hii} \frac{m_i}{v} \overline{f}_i f_i h - g_{hVV} \frac{2M_V^2}{v} V_\mu V^\mu h$$

	Ι	II	Lepton Specific	Flipped
g_{hVV}	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
$g_{ht\overline{t}}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$
$g_{hb\overline{b}}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$
$g_{h\tau^+\tau^-}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$

Type II is MSSM – like 2 Higgs doublet model

HIGGS COUPLINGS IN TYPE II

Lightest Neutral Higgs, h

HIGGS DECAYS CHANGED AT LARGE TAN $\boldsymbol{\beta}$

• At large tan β , rates to bb and $\tau^+\tau^-$ large in type-II 2HDM

S. Dawson

Rate to bb and $\tau^+\tau^-$ almost constant in type-II 2HDM for H, A

COMPLEMENTARITY OF DIRECT SEARCH/HIGGS COUPLINGS

- $\cos(\beta \alpha) = 0$ is SM limit
- Larger tan β has larger couplings to b's which are relatively poorly constrained
- Limits allow for new relatively low scale physics

DIRECT SEARCH AND COUPLING MEASUREMENTS ARE TYPICALLY COMPLIMENTARY

- 2HDM: h⁰, H⁰, A⁰, H[±]
 - Scalar couplings of type-II 2HDM is identical to MSSM
- Higgs sector described in terms of M_h, M_H, M_A, M_{H±}, tan β

DECOUPLING LIMIT

- 2HDMs approach SM when $\cos(\beta \alpha) \rightarrow 0$
- Current limits allow non-SM like couplings
 - Higgs coupling measurements sensitive probes of theory even if new Higgs particles too heavy to be produced

 $pp \to A \to ZH, H \to b\bar{b}$

S. Dawson

New signatures

*Different types of fermion couplings

m_H [GeV]

LOOKING FOR HEAVY HIGGS

- Mass reach grows slowly with luminosity, and faster with energy
- High luminosity LHC is all about coupling measurements

ONCE AGAIN LIMITS FROM PRECISION ELECTROWEAK

 $\rho \sim (m_i^2 - m_j^2)$

where m_i, m_j are the scalar masses

 M_H , M_A , M_{H^+} want to be of similar size barring cancellations

Limits on 2HDM from flavor physics

Gfitter, 1803.01853 S. Dawson

2HDMS AND g-2

- Lepton-specific: quark couplings suppressed, lepton couplings enhanced by tan β
- Other 2HDM fermion assignments can't explain new g-2 and be consistent with Higgs and other flavor data
- Barr-Zee diagram: effective $\gamma\gamma$ H vertex

Consider τ in loop: diagram enhanced by $tan^2\beta$ in lepton specific 2HDM

2HDMS

- Look for heavy H,A H⁺
- Look for new signatures
- Measure Higgs couplings
- Check B physics, g-2 limits

Need all the pieces to get a consistent picture

SUPERSYMMETRIC MODELS AS ALTERNATIVE TO STANDARD MODEL

Many New Particles:

- Spin $\frac{1}{2}$ quarks \Rightarrow spin 0 squarks
- Spin $\frac{1}{2}$ leptons \Rightarrow spin 0 sleptons
- Spin I gauge bosons \Rightarrow spin $\frac{1}{2}$ gauginos
- Spin 0 Higgs \Rightarrow spin $\frac{1}{2}$ Higgsino

Unbroken supersymmetry \Rightarrow degenerate masses of partners

SUSY must be a broken symmetry

MSSM....OUR FAVORITE MODEL

- Quadratic sensitivity to high scale physics cancelled automatically if SUSY particles at TeV scale
- Cancellation result of *supersymmetry*, so happens at every order

$$\delta m_h^2 \sim M_t^2 - m_{stop}^2$$

20

• Stop mass should be TeV scale

FURTHER MOTIVATION: SUSY MODELS UNIFY

- Coupling constants change with energy
- Assume new particles at TeV scale

HOW IS THE MSSM HIGGS SECTOR DIFFERENT FROM A 2HDM?

- MSSM and 2HDM both have 2 scalar SU(2) doublets
- 2HDM has 7 parameters in scalar potential: α , tan β , M_H , M_h , M_A , $M_{H\pm}$, λ_5
- MSSM has 2 parameters in scalar sector: M_A , tan β
- 2HDM Higgs masses are free parameters
- MSSM predicts (at tree level): $M_{H\pm}^2 = M_A^2 + M_W^2$ $m_h^2 + M_H^2 = M_A^2 + M_Z^2$ $m_h^2 M_H^2 = M_Z^2 M_Z^2 \cos^2(2\beta)$

*large radiative corrections to MSSM mass relations

MSSM CONSISTENT WITH 125 GEV HIGGS

- Higgs mass predicted
- Tree level

$$\delta m_h^2 = \frac{1}{2} \left[M_A^2 + M_Z^2 - \sqrt{(M_A^2 - M_Z^2)^2 + 4M_A^2 M_Z^2 \sin^2(2\beta)} \right]$$
$$\rightarrow M_Z^2 \cos^2(2\beta)$$

- I-loop with stops $\delta m_h^2 \sim \frac{3M_t^4}{4\pi^2 v^2} \left[\log\left(\frac{m_S^2}{M_t^2}\right) + \frac{X_t^2}{m_S^2} - \frac{X_t^4}{12m_S^4} \right]$ • Huge theory effort
- Huge theory effort MSSM Higgs mass, <u>2012.15629</u>

S. Dawson

Motivation for heavy squarks

BUT ISN'T THE MSSM AT I TEV RULED OUT?

• Many assumptions in MSSM limits

The reports of my death have been greatly exaggerated. Mark Twain

EXAMPLE: LIMITS ON STOPS

Production cross section fixed by QCD

Decays are model dependent

Interest in compressed spectrum: small mass difference between stop and neutralino

S. Dawson

S. Dawson

MSSM PROJECTIONS

Energy wins

WHAT ABOUT EW SUSY?

- g-2 needs scales around 150 GeV with tan β enhancement
- Still room for light weak SUSY particles with compressed spectra

MODELS

- Lots of room at the LHC for singlet, 2HDM, MSSM models
 - Mass limits on new particles often surprisingly low
- New signatures:
 - Enhanced hh production
 - Compressed spectrum
- Connections to flavor physics
- Complementarity of precision couplings and direct searches

No particular reason to favor any specific model

NEW PHYSICS IN THE TOP SECTOR

WHY NEW PHYSICS IN THE TOP SECTOR ????

- The top is heavy, $M_t >> m_b WHY$?
- The top quark plays a special role in precision measurements
- The t-b mass splitting contributes to the ρ parameter and M_w proportionally to $M_t^{\ 2}$
- Top quark coupling to longitudinal gauge bosons is enhanced by $M_{\rm t}/v$

SM 4TH GENERATION NOT ALLOWED

- Gluon fusion to Higgs rate prohibits SM 4th generation
- Add vector-like quarks (VLQs)
 - Left- and right-handed VLQs have identical gauge quantum numbers
- Simplest possibility:
 - Fermion with charge 2/3, 7_L^2 , 7_R^2
 - 7_L^2 , 7_R^2 have identical SU(3) x SU(2)_L x U(1) couplings (vector-like)

32

- Mixes with SM fermions: $\psi_L = (7_L^{\ \ }, \mathcal{B}_L^{\ \ }), 7_R^{\ \ }, \mathcal{B}_R^{\ \ \ }$
- Motivated by Little Higgs and composite Higgs models which have VLQs

ANOMALIES

$$L \sim g_A \overline{\psi} T^A \gamma_\mu \gamma_5 \psi A^{A,\mu} + g_V \overline{\psi} T^A \gamma_\mu \psi A^{A,\mu}$$

- Physical theories must be anomaly free
- Anomaly results from divergence at high energy from

$$T^{ABC} \sim Tr \left[\eta_i T^A \{ T^B, T^C \} \right] \int \frac{d^n k}{k^3}$$

 $\eta = \mp$ for Left/Right handed fermion

- SM contribution vanishes when summing over all particles in each generation $T_{SM}\sim \Sigma_i Tr \bigg[\eta_i Y_i \{T^B_i,T^C_i\}\bigg] \to 0$ • Vector-like particles anomaly cancellation happens automatically for each fermion

TOP PARTNERS CAN HAVE DIRAC MASSES

Most general mass terms:

 $-\mathcal{L}_{M,SM} = \lambda_2 \overline{\psi}_L^1 \tilde{H} \mathcal{T}_R^1 + h.c.$

$$-\mathcal{L}_{M,1} = \lambda_3 \overline{\psi}_L^1 \tilde{H} \mathcal{T}_R^2 + \lambda_4 \overline{\mathcal{T}}_L^2 \mathcal{T}_R^1 + \lambda_5 \overline{\mathcal{T}}_L^2 \mathcal{T}_B^2 + h.c.$$

• Physical top's are combinations of $7^1, 7^2$

$$\chi_L = \begin{pmatrix} t_L \\ T_L \end{pmatrix} \equiv U_L \begin{pmatrix} \mathcal{T}_L^1 \\ \mathcal{T}_L^2 \end{pmatrix} \qquad \chi_R = \begin{pmatrix} t_R \\ T_R \end{pmatrix} \equiv U_R \begin{pmatrix} \mathcal{T}_R^1 \\ \mathcal{T}_R^2 \end{pmatrix} \qquad U_{L,R} = \begin{pmatrix} \cos \theta_L & \sin \theta_L \\ -\sin \theta_L & \cos \theta_L \end{pmatrix}$$

• λ_4 can be rotated away by field redefinitions

- 4 physical parameters, m_b, M_t, M_T, $\theta_L = \sin \theta_R \sim \sin \theta_L \frac{M_t}{M_T}$
- Higgs, neutral current, charged current couplings changed S. Dawson

DECOUPLING OF HEAVY TOP PARTNERS

• Remember SM top doesn't decouple

$$M^t = \begin{pmatrix} \frac{\lambda_2 v}{\sqrt{2}} & \frac{\lambda_3 v}{\sqrt{2}} \\ \lambda_4 & \lambda_5 \end{pmatrix}$$

 λ_2 is SM-like Yukawa, λ_5 is Dirac mass term, $\lambda_4 \rightarrow 0$

35

• Small mixing:

$$\lambda_2 \sim \frac{\sqrt{2}m_t}{v} \left[1 + \frac{s_L^2}{2} \left(\frac{M_T^2}{m_t^2} - \frac{M_T^2}{M_T^2} - \frac{M_T^2}{M_T^2} \right) \right]$$

$$\lambda_5 \sim M_T \left[1 - \frac{s_L^2}{2} \left(\frac{M_T^2 - m_T^2}{M_T^2} - \frac{M_T^2}{M_T^2} - \frac{M_T^2}{M_T^2} \right) \right]$$

• Decoupling of T requires: $s_L \sim \frac{v}{M_T}$

COUPLINGS TO W/Z/H MODIFIED

• t-T mixing modifies $Z \rightarrow b\overline{b}$ at one loop

$$L_W \sim \frac{g}{\sqrt{2}} W^+_\mu \left\{ c_L \overline{t}_L \gamma^\mu b_L + s_L \overline{T}_L \gamma^\mu b_L \right\}$$

36

Vector-like top partners only decouple when s_L ~ v/M_T
 Evidence for T VLQs may come from b physics
LIMITS FROM LEP

• Top partner increases δg_L^b and reduces R_b

Limit on allowed mixing angle

TOP PARTNER MIXING LIMITED BY PRECISION EW

$$\Delta T \sim T_{SM} s_L^2 \left[-(1+c_L^2) + s_L^2 \frac{M_T^2}{m_t^2} + 2c_L^2 \log\left(\frac{M_T^2}{m_t^2}\right) \right]$$
$$\Delta S \sim -\frac{s_L^2}{6\pi} \left[5c_L^2 + (1-3c_L^2) \log\left(\frac{M_T^2}{m_t^2}\right) \right]$$

95% CL Upper Limits

Strong limits from precision measurements complement direct searches

38

T MOSTLY DECAYS TO Wb

Look for all possible decays

Unitarity bound:

$$M_T < \frac{550 \ GeV}{s_L^2}$$

• SM top + Top partner:

 $L_h \sim \frac{M_t}{v} c_L^2 \overline{t} th + \frac{M_T}{v} s_L^2 \overline{T} Th$

Very different from adding a chiral 4th generation

TOP PARTNER LIMITS

- $gg \rightarrow T\overline{T}$ cross section model independent
- LHC limits look for all possible decays: T+bW, T+tH,T+tZ

VECTOR LIKE LEPTONS

- Can play exactly the same game for leptons
- Add vector-like SU(2) doublet and/or singlet $L = (N, E), \tilde{E}$
- Physical charged leptons (μ and $\chi)$ are mixtures of gauge eigenstates (just like in Top VLQ)

42

- LHC limits from Drell Yan searches for $\chi^+\chi^-$ are relatively weak (~600 GeV)
- hµµ coupling changed from SM by diagonalizing mass matrix (charged singlet case)

MORE CONNECTIONS

Heavy vector-like leptons contribute to $\boldsymbol{\mu}$ mass and to g-2 and the contributions are correlated

Motivation for looking for heavy charged and neutral leptons

43

WHAT IF THERE ARE NO NEW PARTICLES DISCOVERED?

BSM PHYSICS FROM PRECISION MEASUREMENTS

- Higgs precision program
- Generically, if new physics is at scale $\Lambda,$ deviations in Higgs couplings are

$$\delta\kappa \sim \frac{v^2}{\Lambda^2} \sim 5\% \left(\frac{1 \ TeV}{\Lambda}\right)^2$$

 Need SM theory at few % level for this program to be feasible

SMALL CORRECTIONS EXPECTED IN MANY BSM MODELS

If new physics is at I TeV:

	δκ _ν	δκ _b	δκγ
Singlet	<6%	<6%	<6%
2HDM (large t_{β})	~1%	~10%	~1%
MSSM	~.001%	~1.6%	~4%
Composite	~-3%	~-(3-9)%	~-9%
Top Partner	~-2%	~-2%	~1%

Patterns of deviations can pinpoint specific BSM physics

* Numbers respect limits on BSM particles: As direct search limits improve, target precision gets smaller

[Snowmass Higgs report, 1310.8361]

PROBLEM WITH PRECISION PROGRAM

- SM Higgs/fermion/gauge couplings are fixed in SM
- You are not allowed to vary them arbitrarily
 - Gauge invariance fixes couplings
- Need to construct a consistent field theory as benchmark comparison to SM

SMEFT: SM EFFECTIVE FIELD THEORY

- Assumptions: New physics decouples $\Lambda >> v, E$
- At the weak scale: SM SU(3) x SU(2) x U(1) symmetry and SM particles only

• New physics described by

$$L_{SMEFT} = L_{SM} + \frac{L_5}{\Lambda} + \frac{L_6}{\Lambda^2} + \frac{L_7}{\Lambda^3} + \frac{L_8}{\Lambda^4}$$

$$L_n = \Sigma_i C_i^n O_i^n$$

- New physics contributions contained in coefficients C
- Operators form a complete basis (not unique)
- L_5 and L_7 are lepton number violating

- Assume no new light fields
- Assume Higgs is in an SU(2) doublet

ADVANTAGES OF SMEFT APPROACH

- Quantum field theory where calculations done order by order in $1/\Lambda$
 - Compute cross sections without knowing high scale (UV) physics
- Systematically improvable
- At this level, SMEFT calculations are model independent
- Measurements interpreted in terms of SMEFT coefficients
- Can compare very different classes of measurements

Sounds good, but how does this work in practice?

And even more important, how model independent is this?

WHEN IS EFT VALID?

$$L \to L_{SM} + \Sigma_i \frac{C_{6i}}{\Lambda^2} O_{6i} + \Sigma_i \frac{C_{8i}}{\Lambda^4} O_{8i} + \dots$$

SMEFT

- $A^2 \sim |A_{SM} + \frac{A_6}{\Lambda^2} + \dots |^2 \sim A_{SM}^2 + \frac{A_{SM}A_6}{\Lambda^2} + \frac{A_6^2}{\Lambda^4} + \dots$
- Problem is that $(A_6)^2$ terms are the same order as A_8 terms that we have dropped
- If I only keep A_6/Λ^2 terms and drop $(A_6/\Lambda^2)^2$, the cross section is not guaranteed to be finite
- Corrections are $O(s/\Lambda^2)$ or $O(v^2/\Lambda^2)$

COUNTING LORE

$$\sigma \sim g_{SM}^2 (A_{SM})^2 + g_{SM} g_{BSM} A_{SM} A_6 \frac{s}{\Lambda^2} + g_{BSM}^2 (A_6)^2 \frac{s^2}{\Lambda^4} + g_{SM} g_{BSM} A_{SM} A_8 \frac{s^2}{\Lambda^4}$$
Same order of magnitude if $g_{SM} \sim g_{BSM}$
(Dim-6)² could dominate if $g_{BSM} >> g_{SM}$

GETTING STARTED

- Start with Warsaw basis and ignore flavor (A VERY BIG ASSUMPTION)
 - Operators in different bases related by equations of motion
- Baby steps first: Consider interference of SM and dimension-6 operators
 - ie, new physics contributions are linear in Wilson coefficients
 - So we need (energy of process) << Λ
 - (No problem for fits to LEP electroweak precision data)

WARSAW BASIS

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}^{\prime}e_{r}^{\prime}\varphi)$	
$Q_{\tilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)_{\Box}(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}^{\prime}u_{r}^{\prime}\widetilde{\varphi})$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{*}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}^{\prime}d_{r}^{\prime}\varphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}'_p \sigma^{\mu\nu} e'_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i \stackrel{\leftrightarrow}{D}_{\mu} \varphi)(\bar{l}'_{p} \gamma^{\mu} l'_{r})$	
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}'_p \sigma^{\mu\nu} e'_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\overline{l}_{p}^{\prime}\tau^{I}\gamma^{\mu}l_{r}^{\prime})$	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}'_p \sigma^{\mu\nu} \mathcal{T}^A u'_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}^{\prime}\gamma^{\mu}e_{r}^{\prime})$	
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\vec{q}_p^\prime \sigma^{\mu\nu} u_r^\prime) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}'_{p}\gamma^{\mu}q'_{r})$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}'_p \sigma^{\mu\nu} u'_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i \overset{\leftrightarrow}{D}{}^{I}_{\mu} \varphi)(\bar{q}'_{p} \tau^{I} \gamma^{\mu} q'_{r})$	
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}'_p \sigma^{\mu u} \mathcal{T}^A d'_r) \varphi G^A_{\mu u}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\bar{u}'_{p} \gamma^{\mu} u'_{r})$	
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p^\prime \sigma^{\mu\nu} d_r^\prime) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}'_{p}\gamma^{\mu}d'_{r})$	
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}'_p \sigma^{\mu\nu} d'_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\tilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}^{\prime}\gamma^{\mu}d_{r}^{\prime})$	

$(\bar{L}L)(\bar{L}L)$ $(\bar{R}R)(\bar{R}.)$		$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(\bar{l}'_p \gamma_\mu l'_r) (\bar{l}'_s \gamma^\mu l'_t)$	Q_{ee}	$(\bar{e}_p^\prime \gamma_\mu e_r^\prime) (\bar{e}_s^\prime \gamma^\mu e_t^\prime)$	Q_{le}	$(\bar{l}'_p \gamma_\mu l'_r) (\bar{e}'_s \gamma^\mu e'_t)$
$Q_{qq}^{(1)}$	$(\bar{q}'_p \gamma_\mu q'_r) (\bar{q}'_s \gamma^\mu q'_t)$	Q_{uu}	$(\bar{u}_p'\gamma_\mu u_r')(\bar{u}_s'\gamma^\mu u_t')$	Q_{lu}	$(\bar{l}'_p \gamma_\mu l'_r)(\bar{u}'_s \gamma^\mu u'_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p^\prime \gamma_\mu \tau^I q_r^\prime) (\bar{q}_s^\prime \gamma^\mu \tau^I q_t^\prime)$	Q_{dd}	$(\bar{d}'_p \gamma_\mu d'_r) (\bar{d}'_s \gamma^\mu d'_t)$	Q_{ld}	$(\bar{l}'_p \gamma_\mu l'_r) (\bar{d}'_s \gamma^\mu d'_t)$
$Q_{lq}^{(1)}$	$(\bar{l}'_p\gamma_\mu l'_r)(\bar{q}'_s\gamma^\mu q'_t)$	Q_{eu}	$(\bar{e}_p^\prime \gamma_\mu e_r^\prime) (\bar{u}_s^\prime \gamma^\mu u_t^\prime)$	Q_{qe}	$(\bar{q}_p^\prime \gamma_\mu q_r^\prime) (\bar{e}_s^\prime \gamma^\mu e_t^\prime)$
$Q_{lq}^{(3)}$	$(\bar{l}'_p \gamma_\mu \tau^I l'_r) (\bar{q}'_s \gamma^\mu \tau^I q'_t)$	Q_{ed}	$(\bar{e}_p^\prime \gamma_\mu e_r^\prime) (\bar{d}_s^\prime \gamma^\mu d_t^\prime)$	$Q_{qu}^{(1)}$	$(\bar{q}'_p \gamma_\mu q'_r) (\bar{u}'_s \gamma^\mu u'_t)$
		$Q_{ud}^{(1)}$	$(\bar{u}'_p \gamma_\mu u'_r) (\bar{d}'_s \gamma^\mu d'_t)$	$Q_{qu}^{(8)}$	$(\bar{q}'_p \gamma_\mu \mathcal{T}^A q'_r) (\bar{u}'_s \gamma^\mu \mathcal{T}^A u'_t)$
		$Q_{ud}^{(8)}$	$(\bar{u}'_p \gamma_\mu \mathcal{T}^A u'_r) (\bar{d}'_s \gamma^\mu \mathcal{T}^A d'_t)$	$Q_{qd}^{(1)}$	$(\bar{q}'_p \gamma_\mu q'_r) (\bar{d}'_s \gamma^\mu d'_t)$
				$Q_{qd}^{(8)}$	$(\bar{q}'_p \gamma_\mu \mathcal{T}^A q'_r) (\bar{d}'_s \gamma^\mu \mathcal{T}^A d'_t)$
$(\bar{L}R$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating			
Q_{ledq}	$(\bar{l}_p^{'j}e_r')(\bar{d}_s'q_t^{'j})$	$Q_{duq} \qquad \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(d_p^{\prime\alpha})^T \mathbb{C} u_r^{\prime\beta} \right] \left[(q_s^{\prime\gamma j})^T \mathbb{C} l_t^{\prime k} \right]$			
$Q_{quqd}^{(1)}$	$(\bar{q}_p^{\prime j} u_r^\prime) \varepsilon_{jk} (\bar{q}_s^{\prime k} d_t^\prime)$	$\left Q_{qqu} \right \qquad \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(q_p^{\prime\alpha j})^T \mathbb{C}q_r^{\prime\beta k} \right] \left[(u_s^{\prime\gamma})^T \mathbb{C}e_t^{\prime} \right]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^{'j}\mathcal{T}^A u_r')\varepsilon_{jk}(\bar{q}_s^{'k}\mathcal{T}^A d_t')$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{'\alpha j})^T \mathbb{C}q_r^{'\beta k}\right]\left[(q_s^{'\gamma m})^T \mathbb{C}l_t^{'n}\right]$		
$Q_{lequ}^{(1)}$	$(\bar{l}_p^{\primej}e_r^\prime)\varepsilon_{jk}(\bar{q}_s^{\primek}u_t^\prime)$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma} \left[(d_p^{\prime\alpha})^T \mathbb{C} u_r^{\prime\beta} \right] \left[(u_s^{\prime\gamma})^T \mathbb{C} e_t^{\prime} \right]$		
$Q_{lequ}^{(3)}$	$(\bar{l}_p^{\prime j}\sigma_{\mu\nu}e_r^\prime)\varepsilon_{jk}(\bar{q}_s^{\prime k}\sigma^{\mu\nu}u_t^\prime)$			-	

53

- The interesting operators are those with derivatives
- Derivative operators introduce new structures into interactions
- 2499 operators with flavor

+.....

• Many operators are not just a rescaling of SM operators

SMEFT EXAMPLE: HIGGS PRODUCTION FROM GLUONS

$$L_{eff} = L_{SM} - \frac{\alpha_s}{12\pi} \frac{h}{v} \delta \kappa_g G^A_{\mu\nu} G^{\mu\nu,A} - \delta \kappa_t \frac{m_t}{v} \bar{t} th$$

• New physics could be in ggh vertex or Yukawa couplings

- gg \rightarrow h cannot distinguish $\delta \kappa_g$ from $\delta \kappa_t$ in the large M_t limit
- Not a clean measurement of tth coupling (and of course there could be new colored particles in the loop)
- In SMEFT language: $O_G = (\phi^{\dagger}\phi)G^A_{\mu\nu}G^{A,\mu\nu}$ $O_{tH} = (\phi^{\dagger}\phi)\overline{\psi}_L \tilde{H}t_R$ $(\phi^{\dagger}\phi) \rightarrow \frac{(h+v)^2}{2}$
- (This example really just looks like rescaling vertices, but note contribution to hh)

 $\kappa = 1 + \delta \kappa$

GLUON FUSION IN THE κ FRAMEWORKS

$$f$$

$$gg \rightarrow h \text{ sensitive to } |\delta\kappa_g - \delta\kappa_t|^2$$

$$A(gg \rightarrow h) = F_{SM} \left(\frac{M_h^2}{M_t^2}\right) \left[1 + \delta\kappa_t\right] - F_{SM}(0)\delta\kappa_g$$
Almost equal in SM
Can't distinguish *long distance* physics (\delta\kappa_t) from *short distance* physics (new particles in loops, $\delta\kappa_g$ nonzero)

 $\delta k_{\rm g}$

g coccore

وووووووو g

NEW PHYSICS IN THE TOP-HIGGS SECTOR

Is the tth coupling the Standard Model coupling?

Non-SM contributions change rate/distributions

- Observation of gluon fusion production of Higgs at expected rate doesn't mean Higgs has SM tth coupling
- Need tth production
- High luminosity will pin down coupling

MOMENTUM DEPENDENT OPERATORS CHANGE KINEMATIC DISTRIBUTIONS

- Look in tails of distributions
- Typically quite small effects:
 - $\mathcal{O}\left(\frac{p_T^2}{\Lambda^2}\right)$
- Couplings constrained to give correct rate for ggh

Higgs plus jet production at 14 TeV

 $c_t = k_t$

Schlaffer, Spannowsky, Takeuchi, Weiler, Wymant

POWER OF SMEFT

- Gauge invariant operators contribute to Z-pole observables, Higgs physics, diboson production, top quark physics, B physics
- Limits from different processes can be combined
- Hope is that pattern of new coefficients will point to underlying UV physics

ASSUMPTIONS CREEP IN

- Single parameter fit to WW/WZ/Wh/Zh data
- Include QCD and I/Λ^4 terms
- Fit assumes SM efficiencies in each bin (not necessarily true)
- Fit ignores flavor

IS IT ALL THE LAST BIN?

• Fit results depend on cut on maximum energy

S. Dawson

SITUATION IS EVEN MURKIER WITH NLO EW

All SMEFT effects here

- Example $M_W = M_W^{SM} + \delta M_W$
- Dependence on many coefficients at NLO (QCD + EW)
- Always use "best" SM prediction for fits

$$\begin{split} \delta M_W^{LO} = & \frac{v^2}{\Lambda^2} \left\{ \begin{array}{c} -30C_{\phi l}^{(3)} + 15C_{ll} - 28C_{\phi D} - 57C_{\phi WB} \\ -36C_{\phi l}^{(3)} + 17C_{ll} - 30C_{\phi D} - 64C_{\phi WB} \end{array} \right. \\ & \left. -0.1C_{\phi d} - 0.1C_{\phi e} - 0.2C_{\phi l}^{(1)} - 2C_{\phi q}^{(1)} + C_{\phi q}^{(3)} + 3C_{\phi u} + 0.4C_{lq}^{(3)} \\ - 0.03C_{\phi B} - 0.03C_{\phi \Box} - 0.04C_{\phi W} - 0.9C_{uB} - 0.2C_{uW} - 0.2C_{W} \right\} \end{split}$$

S. Dawson

Dawson, Giardino; ArXiv:1909.02000

 $\alpha,~\textbf{G}_{\mu}\textbf{,}~\textbf{M}_{Z}$ scheme

MANY SOPHISTICATED GLOBAL FITS

Include Higgs data, WW, WZ production with kinematic distributions

- Include precision observables from LEP/SLD
- Compare with "best SM theory"
- Calculate to NLO QCD SMEFT
- Some fits include flavor observables
- Some fits include top observables

GLOBAL FIT

64

WHAT DO WE LEARN BY FITTING SMEFT COUPLINGS?

- In any given high scale model, coefficients of EFT predicted in terms of small number of parameters
- Different coefficients are generated in different models
- By measuring the pattern of coefficients, information is gleaned about high scale physics

Fit to Higgs data Complex 0.4 scalar triplet-Real scalar 0.2 triplet Real scalar singlet Ϋ́ 0.0 $O_H = \frac{1}{2v^2} \partial_\mu (\phi^{\dagger} \phi) \partial^\mu (\phi^{\dagger} \phi)$ -0.2 $O_f = \frac{(\phi^{\dagger}\phi)}{v^2} c_f y_f(\overline{\psi}_L f_R \phi)$ -0.4-0.4 -0.2 0.2 0.0 0.4 C_H

65

Dawson, Murphy, 1704.07851

COMPUTING SMEFT COEFFICIENTS

- Start with Lagrangian in full theory (including heavy states)
- Use equations of motion to integrate out heavy particles
- Match to dimension-6 EFT at high scale
- RGE evolve operators to weak scale
- Fit to data

EXAMPLE: SINGLET MODEL

- High scale is M_H, mass of heavy scalar
- Integrating out H generates 2 operators:

$$O_H = (\phi^{\dagger} \phi)^3$$
$$O_{H\Box} = (\phi^{\dagger} \phi) \Box (\phi^{\dagger} \phi)$$

• Coefficients are predictions from matching model to SMEFT: $\frac{v^2}{\Lambda^2}C_{H\Box} = -\frac{1}{2}\tan^2\theta$ Cu=0 in Ze

 $C_H = C_{H\square} \left(\tan \theta \frac{b_3}{3v} - a_2 \right)$

 $C_{H}=0$ in Z_{2} symmetric model

67

 $L \sim \frac{a_2}{2} (\phi^{\dagger} \phi) S^2 + \frac{b_3}{6} S^3$

SINGLET EXAMPLE, CONTINUED

 \bullet So we have coefficients at high scale Λ

• Data is at
$$M_Z$$

 $C_i(M_Z) = C_i(\Lambda) - \frac{\gamma_{ij}C_j}{16\pi^2}\log\left(\frac{\Lambda}{M_Z}\right)$

• Operators mixing under RGE: generate $C_{HD} \sim \Delta T$ $\gamma_{C_{HD},C_{H\Box}} \sim \frac{20}{3}g_1^2$

SINGLET MODEL \leftrightarrow SMEFT

- C_H limits from loop contributions involving hhh coupling: very weak
- Only points on yellow, magenta, cyan lines correspond to points in singlet model
- Hope is that precision measurements would pick out model point

SINGLET MODEL \leftrightarrow SMEFT

- SMEFT limits accurately reproduce complete singlet model results
- Limits dominated by EWPO contributions through RGE generated C_{HD} contribution

Dawson, Homiller, Lane, 2007.01296

PATTERNS OF COEFFICIENTS

	$Singlet_{\mathbb{Z}_2}$	$\operatorname{Singlet}_{\mathbb{Z}_2}$	2HDM	T VLQ	(TB) VLQ	8
$\frac{v^2 C_H}{\Lambda^2}$	$\frac{\tan^2\theta}{2}(\tan\theta \frac{m}{3v}-\kappa)$		$\frac{\cos^2(\beta-\alpha)M^2}{v^2}$			
$\frac{v^2 C_{H \square}}{\Lambda^2}$	$-\frac{\tan^2\theta}{2}$	$-\frac{\tan^2\theta}{2}$				
$\frac{v^2 C_{bH}}{\Lambda^2}$			$-Y_b \eta_b \frac{\cos(\beta-\alpha)}{\tan\beta}$		$Y_b(s^b_R)^2$	
$\frac{v^2 C_{1H}}{\Lambda^2}$			- $Y_t \eta_t \frac{\cos(\beta - \alpha)}{\tan \beta}$	$Y_t(s_L^t)^2$	$Y_t(s_R^t)^2$	
$\frac{u^2 C_{TH}}{\Lambda^2}$			$-Y_{\tau}\eta_{\tau}\frac{\cos(\beta-\alpha)}{\tan\beta}$			
$\frac{v^2(C_{Hq}^{(1)})_{33}}{\Lambda^2}$				$\frac{(s_L^t)^2}{2}$		
$\frac{v^2(C_{Hq}^{(3)})_{33}}{\Lambda^2}$				$-\frac{(s_{1}^{*})^{2}}{2}$		
$\frac{v^2 C_{Hb}}{\Lambda^2}$					$(s_{R}^{b})^{2}$	
$\frac{v^2 C_{H1}}{\Lambda^2}$					$-(s_R^t)^2$	
$\frac{v^2 C_{Hab}}{\Lambda^2}$					$2s_R^t s_R^b$	
$\frac{v^2 C_{HG}}{\Lambda^2}$				$-\frac{\alpha_s(s_L^t)^2}{8\pi}(.02)$	$\frac{\alpha_{s}(s_{R}^{b})^{2}}{8\pi}(.65)$	$-\frac{\alpha_s m^2}{96 \pi m_s^2}$

71

* These are particularly simple models

SMEFT HARD WAY TO FIND NEW PHYSICS

- Lots of work (theory and experiment) to find BSM physics from SMEFT fits
- Need to make sure theory is accurate enough to allow for drawing conclusions
- Need to include data from many sources
- Need to study how well we can discriminate between models

This program is in its infancy at the LHC
THE END

- Much motivation to search for new BSM physics
 - Unanswered questions
 - We don't know where new physics might be
- I have only presented a very small slice of this huge subject
- Almost all BSM physics has implications for LHC new particle searches, precision measurements, and flavor physics