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LECTURES

1) Likelihood: Parameter determination

2) Chi-squared: Param determination & Goodness of Fit

3) Learning to love the Covariance Matrix
)

4) (a) Combining results
(b) Understanding Neural Networks
5) Searches for New Physics: Discovery and Limits
6) What is Probability? Bayes & Frequentist Approaches

Plus: Discussions
Problems
Working on statistical issues



Omitting introductory material

Why spend time on understanding Statistics?
Relation of Statistics to Probability Theory

Random and systematic uncertainties

Binomial distribution

Poisson distribution

Relationships among binomial, Poisson & Gaussian



Likelihoods

1) Brief Introduction
2) Do’s & Dont's
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Topics

What it is

How it works: Resonance
Uncertainty estimates
Detailed example: Lifetime
Several Parameters

Extended maximum £

Do’'s and Dont's with £



Simple example: Angular distribution
Data=040,05 ..... O,

y=N(1+pBcos20) {RULE 1: Write down pdf}
yi =N (1 + B cos?0)
= probability density of observing 6;, given 3
L(B) =11y
= probability density of observing the data set y;, given 3

Best estimate of 3 is that which maximises £
Values of (3 for which £ is very small are ruled out
Uncertainty of estimate for 3 comes from width of £ distribution

CRUCIAL to normalise y N =1/{2(1 + p/3)}
(Information about parameter 3 comes from shape of exptl distribution of cos6)

B=-1 B large L

cos 6 cos 0 B



How It works: Resonance

y ~ [/2
(M-My)? + (I'12)?




Conventional to consider
£=1In(L) = ZIn(y)
For large N, £ - Gaussian
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Maximum likelihood uncertainty

Range of likely values of param p from width of .£ or 1 dists.
If £(u) is Gaussian, following definitions of o are equivalent:
1) RMS of £(n)

2) 1N(-d2InL/ du?)  (Mnemonic)

3) In(L(He0) = In(L(Ho)) -1/2
If £(u) is non-Gaussian, these are no longer the same

“Procedure 3)yabove-still qives interval-thatcontains the
true value of parameter y with 68% probability”

Uncertainties from 3) usually asymmetric, and asym uncertainties are
messy. So choose param sensibly

e.g 1/p rather than p; TorA



Realistic analyses are more
complicated than this

Lifetime Determination
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Several Parameters
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Extended Maximum Likelihood

Maximum Likelihood uses shape - parameters
Extended Maximum Likelihood uses shape and normalisation
i.e. EML uses prob of observing:
a) sample of N events; and
b) given data distribution in x,......
- shape parameters and normalisation.

Example: Angular distribution

Observe N events total e.g 100
F forward 96
B backward 4
Rate estimates ML EML
Total 100+£10

Forward 96+2 96+10
Backward 4+2 4+ 2
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ML and EML

ML uses fixed (data) normalisation
EML has normalisation as parameter

Example 1: Cosmic ray experiment

See 96 protons and 4 heavy nuclei

ML estimate 96 £ 2% protons
EML estimate 96 + 10 protons

Example 2: Decay of resonance
Use ML for Branching Ratios
Use EML for Partial Decay Rates

4 +2% heavy nuclei
4 + 2 heavy nuclei

16
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DO'S AND DONT'S WITH £

- COMBINING PROFILE £s
‘NORMALISATION FOR LIKELIHOOD
- JUST QUOTE UPPER LIMIT

« AIn £) = 0.5 RULE

. £ AND GOODNESS OF FIT

*[Peadp =090
Py

 BAYESIAN SMEARING OF £

« USE CORRECT £ (PUNZI EFFECT)
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Danger of combining profile £s

Experiments quote Likelihood, profiled over
nuisance parameters, so that combinations can
be performed.

Very simple ‘tracking’ example:
* No magnetic field
* 2-D fit of straight line y = a + bx

a = parameter of interest, b = nuisance param
* Track hits in 2 subdetectors, each of 3 planes

19



X —=

(a) Hits in 2 sub-detectors, each with 3 T a—
planes

(b) Covariance ellipses for separate fits Ly  INLorof
and L,, and combined Lomp (c)

(c) InL, as function of a, for all 3 lines L Lo
(d) bpest @s a function of a

N.B. bpest for L1 and L, are the same
\ a—

bbest L1 L 5




COSMOLOGY EXAMPLE

Plot of dark energy fraction v dark

matter fraction by various methods.

Each determines dark energy
fraction poorly, but combination is
fine, because of different
correlations.

Combining Profile Likelihoods
would give very large uncertainty
on dark energy fraction.
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NORMALISATION FOR LIKELIHOOD

jP(X | £2) dX MUST be independent of p

[\

Data Param

[z =2t /N]
Exponential Distribution
INCORRECT PU“”ZTet”
Missing 1/t
- T infinite
S T too large

T about right
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QUOTING UPPER LIMIT

“We observed no significant signal, and our 90% conf
upper limitis .....”

Need to specify method e.g.
L
Chi-squared (data or theory error)
Frequentist (Central or upper limit)
Feldman-Cousins
Bayes with prior = const,

“Show your £’

1) Not always practical

2) Not sufficient for frequentist methods
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90% C.L. Upper Limits

For Upper |ts

FOr 2 sided mterv/
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AlInL = -1/2 rule

If £(u) is Gaussian, following definitions of o are
equivalent:

1) RMS of £(u)
2) 1N(-d2L/du?)
3) In(L(ut0) = In(L(Mo)) -1/2

If £(u) is non-Gaussian, these are no longer the same

“Procedur ve still gives interval ains the
true value of para % probability”

Heinrich: CDF note 6438 (see CDF Statistics
Committee Web-page)

Barlow: Phystat05
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Coverage g

* \What it is: Hirue H

For given statistical method applied to many sets of data to extract
confidence intervals for param p, coverage C is fraction of ranges that
contain true value of param. Can vary with p

* Does not apply to your data:
It is a property of the statistical method used

It is NOT a probability statement about whether p,. lies in your
confidence range for p

C(u)
. ] <— 68%
* Coverage plot for Poisson counting expt
Ideal coverage
Observe n counts plot
Estimate Py from maximum of likelihood u

L(n) = e*p/n!  and range of p from IN{L(Hpest)/L(H)} < 0.5
For each p,. calculate coverage C(pi o), and compare with nominal 68%



COVERAGE

How often does quoted range for parameter include param’s true value?

N.B. Coverage is a property of METHOD, not of a particular exptl result

Coverage can vary with U

Study coverage of different methods of Poisson parameter L, from
observation of number of events n

-100%
T <« Nominal

value
C(u)

Hope for:

28



COVERAGE

If true for all &4 :  “correct coverage”

P< & for some # “undercoverage’
(this is serious !)

P> ¢ for some _«c"overcoverage’

Conservative

Loss of rejection
power

29



Coverage : £ approach (Not Neyman construction)

P(n,n) =e*u"/n! (Joel Heinrich CDF note 6438)
-2 InA< 1 A =Pmn,n)/P(n,n,.)  UNDERCOVERS
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Neyman central intervals, NEVER undercover

(Conservative at both ends)
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Feldman-Cousins Unified intervals

Neyman construction so NEVER undercovers

0.5
0.4
0.3
0.2
0.1

0.0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 M

Coverage (C) vs U: Unified Intervals (C — 0.6827 as L — o)
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Probability ordering
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Coverage (C) vs UW: Probability Ordering Intervals (C — 0.6827 as L — o)
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> = (n-p)*/p Ay?=0.1 —— 24.8% coverage?

NOT Neyman : Coverage = 0% > 100%
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Unbinned L., and Goodness of Fit?

Find params by maximising £
So larger £ better than smaller £

So L.« gives Goodness of Fit??

Bad Good? Great?

Monte Carlo distribution T l l l
F
of unbinned £,,, —> reaueney

Bmax —

35



Not necessarily:
L(data,params)

1

fixed vary
Contrast pdf(data,params)
t t
vary fixed

e.g. p(A) = A exp(-At)

T Max att=0

t —

param

A

v

data —

Max at A=1/t
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Example 1

Fit exponential to times t, t; t5 ....... [ Joel Heinrich, CDF 5639 ]

L= TUA exp(-At)

MLrax = -N(1 + [nty)

i.e. Depends only on AVERAGE t, but is

INDEPENDENT OF DISTRIBUTION OF t  (except for........ )

(Average t is a sufficient statistic)

Variation of £,,,,in Monte Carlo is due to variations in samples’ averag?t , but
NOT TO BETTER OR WORSE FIT T

> pdf q

Same average t same L ax — \37




Example 2

dN  1+ocos® O

dcos® 1+o/3

£ 1+acos 9j
1+a/3

cos 6

pdf (and likelihood) depends only on cos26;

Insensitive to sign of cosb,

So data can be in very bad agreement with expected distribution
e.g. all data with cosB <0

and L.« does not know about it.

Example of general principle 38



Example 3

Fit to Gaussian with variable p, fixed o

pdf = |

cwln

b Loax = N(-0.5 72717 — o) — 0.5 Z(X; — Xay)2 /02

T

constant

i.e. Lnax depends only on variance(x),

which is not relevant for fitting p

e o]

~variance(x)

(Uest = Xav)

Smaller than expected variance(x) results in larger £«

X

—>

Worse fit, larger £«

X_»

Better fit, lower £,
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L. .. and Goodness of Fit?
Conclusion:

L has sensible properties with respect to parameters

NOT with respect to data

L. Within Monte Carlo peak is NECESSARY
not SUFFICIENT

(‘Necessary’ doesn’t mean that you have to do it!)
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Binned data and Goodness of Fit using £L-ratio

In[L-ratio] = IN[.L/Lyesi]

large p; -0.5)(? i.e. Goodness of Fit
Lyst 1S independent of parameters of fit,

and so same parameter values from £ or L-ratio

Baker and Cousins, NIM A221 (1984) 437
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L and pdf

Example 1: Poisson

pdf = Probability density function for observing n, given
P(n;u) =e + un/n!

From this, construct £ as

L(4;n) =e H un/n! K
i.e. use same functionof pand n,but | . .. . .. . . . .pdf
for pdf, u is fixed, but T
for £, nis fixed U L
n —>

N.B. P(n;u) exists only at integer non-negative n
L(u;n) exists only as continuous function of non-negative p

42



Example 2  Lifetime distribution

pdf p(tA) = re-M

So  L(At)= Ae ™ (single observed t)
Here both t and A are continuous

pdf maximises att=0

L maximises at A =t

N.B. Functional form of p(t) and £()) are different

Fixed A T

Fixed t

t—»

43



Example 3: Gaussian

pdf(x;u) = exp{-(x-p)?/262} /(c\27)

L(u;x) = exp{-(x-p)?/202} /(cV2n)

N.B. In this case, same functional form for pdf and £
So if you consider just Gaussians, can be confused between pdf and £

So examples 1 and 2 are useful

44



Transformation properties of pdf and £

Lifetime example: dn/dt=A e M

Change observable from t to y = 't
2
an adn dt _2yhe

dy dt ay
So (a) pdf changes, BUT

(b j_df .[rdydy

l.e. corresponding integrals of pdf are
INVARIANT
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Now for Likelihood

When parameter changes from A to 1= 1/A
(a’) £ does not change

dn/dt = (1/7) exp{-t/t}

and so £(t;t) = L(A=1/1;t)

because identical numbers occur in evaluations of the two £’s

BUT ¢y ©
b) LL(X,t)d?» # JlTOL(T’{)dT

So it is NOT meaningful to integrate £

(However,......... )

46



odf(t;A) L(A:t)
Value of Changes when |[INVARIANT wrt
function observable is transformation

transformed of parameter
Integral of INVARIANT wrt | Changes when
function transformation |param is

of observable |transformed
Conclusion Max prob Integrating £

density not very
sensible

not very
sensible
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CONCLUSION:

Py
dep =a NOT recognised statistical procedure
P/

[Metric dependent:
T range agrees with T4

A range inconsistent with 1/7e4 ]

BUT
1) Could regard as “black box”
2) Make respectable by £ T—— > Bayes’ posterior

Posterior(A) ~ £(A)* Prior(}) [and Prior(A) can be constant]

48
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Getting £ wrong: Punzi effect

Giovanni Punzi @ PHYSTAT2003
“Comments on £ fits with variable resolution”

Separate two close signals, when resolution o varies event
by event, and is different for 2 signals

e.g. 1) Signal 1 1+cos?0
Signal 2  Isotropic
and different parts of detector give different o

2) M (or 1)
Different numbers of tracks - different oy, (or o;)
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Events characterised by x; and c;

A events centredon x =0

B events centred on x = 1

L(Fwrong = IT [f * G(x;,0,6;) + (1-f) * G(x;,1,07)]
L()right = I [F*p(xi,0::A) + (1-6) * p(xi,0::B)]

p(S,T) =p(S|T) * p(T)
p(x;,0i/A) = p(xiloi,A) * p(ci|A)
= G(x;,0,07) * p(oi|A)
So
L(Drigne = H[f * G(x;,0,0;) * p(oi|A) + (1-1) * G(x;,1,0;) * p(ci|B)]

If p(G|A) p(G|B) 'Brlght 'ewrong
but NOT otherwise
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Punzi’s Monte Carlo for

CA OB
1-0 1-0
1-0 1-1
1-0 2:0
12 1.5 23
1.0 1>2

A: G(X,O,GA)

B: G(x,1,0p)

fa =1/3
Lurong
fa Of

0-336(3) 008
0374(4) 008
0645(6) 0-12
0514(7) 014

0.482(9) 0.09

£rig ht

fA Or

Same
0-333(0) O
0-333(0) O
0-335(2) 003
0.333(0) O

1) Lurong OK for p(c,) =p(op) , but otherwise BIASSED

2) Lignt unbiassed, but £,.,,, biassed (enormously)!

3) Lright gives smaller o; than Lyng
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Explanation of Punzi bias

GAZI GBZZ

k A events with o =1 /
g

B events with o =2

! s

:

X =2 X 2>
ACTUAL DISTRIBUTION FITTING FUNCTION

[N 4/Ng variable, but same for A and B events|
Fit gives upward bias for N,/Ng because (1) that is much better for A events; and 53

(11) 1t does not hurt too much for B events



Another scenario for Punzi problem: PID

A B m K
M — TOF
Originally:
Positions of peaks = constant K-peak - 1-peak at large momentum
o; variable, (o;)a 7 (0i)B c; ~ constant, Pk F Prx

COMMON FEATURE: Separation/Error # Constant

Where else??

MORAL: Beware of event-by-event variables whose pdf's do not

appearin £

54



Avoiding Punzi Bias

BASIC RULE:
Write pdf for ALL observables, in terms of parameters

* Include p(o|A) and p(o|B) in fit
(But then, for example, particle identification may be determined more
by momentum distribution than by PID)

OR

* Fit each range of o, separately, and add (N,), =2
(Na)iota, @and similarly for B

Incorrect method using £, Uses weighted average
of (f);, assumed to be independent of

Talk by Catastini at PHYSTATO05
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Conclusions

How it works, and how to estimate uncertainties

A(In £) = 0.5 rule and coverage
Several Parameters

Likelihood does not guarantee coverage
Unbinned £., and Goodness of Fit

Use correct £ (Punzi effect)
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