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LECTURES
1) Likelihood: Parameter determination
2) Chi-squared: Param determination & Goodness of Fit  
3) Learning to love the Covariance Matrix
4) (a) Combining results

(b) Understanding Neural Networks
5) Searches for New Physics: Discovery and Limits
6) What is Probability? Bayes & Frequentist  Approaches

Plus: Discussions
Problems
Working on statistical issues
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Omitting introductory material
• Why spend time on understanding Statistics?
• Relation of Statistics to Probability Theory
• Random and systematic uncertainties 
• Binomial distribution
• Poisson distribution
• Relationships among binomial, Poisson & Gaussian
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Likelihoods
1) Brief Introduction

2) Do’s & Dont’s

Louis Lyons
Oxford & Imperial College

CMS
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Topics
What it is

How it works: Resonance

Uncertainty estimates

Detailed example: Lifetime

Several Parameters

Extended maximum L

Do’s and Dont’s with L
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Simple example:  Angular distribution 
Data = q1 q2 q3 ….. qn

y = N (1 + b cos2q)     {RULE 1: Write down pdf}
yi = N (1 + b cos2qi)

= probability density of observing qi, given b
L(b) = P yi

= probability density of observing the data set yi, given b
Best estimate of b is that which maximises L
Values of b for which L is very small are ruled out
Uncertainty of estimate for b comes from width of L distribution

CRUCIAL to normalise y           N = 1/{2(1 + b/3)}
(Information about parameter b comes from shape of exptl distribution of cosq)

cos q cos q b

b = -1                     b large                                   L
y
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How it works: Resonance

y ~               Γ/2
(m-M0)2 + (Γ/2)2

m                                                           m

Vary M
0

Vary Γ
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Conventional to consider
l = ln(L) = Σ ln(yi)

For large N, L à Gaussian
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Maximum likelihood uncertainty
Range of likely values of param μ from width of L or l dists.
If L(μ) is Gaussian, following definitions of σ are equivalent:
1) RMS of L(µ)

2) 1/√(-d2lnL / dµ2) (Mnemonic)

3) ln(L(μ0±σ) = ln(L(μ0)) -1/2
If L(μ) is non-Gaussian, these are no longer the same

“Procedure 3) above still gives interval that contains the 
true value of parameter μ with 68% probability”

Uncertainties from 3) usually asymmetric, and asym uncertainties are 
messy. So choose param sensibly 

e.g 1/p rather than p;       τ or λ
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Realistic analyses are more 
complicated than this

Lifetime Determination
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Several Parameters

PROFILE L
Lprof =L(β,νbest(β)),  where
β = param of interest
ν = nuisance param(s)
Uncertainty on β from 
decrease in ln(Lprof) by 0.5

Contours of lnL
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Extended Maximum Likelihood

Maximum Likelihood uses shape à parameters
Extended Maximum Likelihood  uses shape and normalisation
i.e. EML uses prob of observing:

a) sample of N events;    and
b) given data distribution in x,…… 

à shape parameters and normalisation.

Example:   Angular distribution
Observe N events total               e.g  100

F forward                               96
B backward                              4

Rate estimates        ML EML
Total         --- 100±10

Forward    96±2          96±10
Backward    4±2             4± 2
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ML and EML

ML uses fixed (data) normalisation
EML has normalisation as parameter

Example 1:  Cosmic ray experiment 
See 96 protons     and    4 heavy nuclei 

ML estimate      96 ± 2% protons      4 ±2% heavy nuclei
EML estimate      96 ± 10 protons       4 ± 2 heavy nuclei

Example 2:  Decay of resonance
Use ML  for Branching Ratios
Use EML for Partial Decay Rates
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• COMBINING PROFILE Ls

•NORMALISATION FOR LIKELIHOOD

• JUST QUOTE UPPER LIMIT

• D(ln L) = 0.5 RULE

• Lmax AND GOODNESS OF FIT

•

• BAYESIAN SMEARING OF L

• USE CORRECT L  (PUNZI EFFECT)

9 0.0 d p =ò
p
p

U

L
 L

DO’S AND DONT’S WITH L



Danger of combining profile Ls
Experiments quote Likelihood, profiled over 
nuisance parameters, so that combinations can 
be performed.

Very simple ‘tracking’ example:
* No magnetic field
* 2-D fit of straight line y = a + bx

a = parameter of interest,  b = nuisance param

* Track hits in 2 subdetectors, each of 3 planes
19



y

x

L2

L1

Lcomb

a
b

a

lnLprof

(a) (b)

(c)

L2L1

L1 L2

(a) Hits in 2 sub-detectors, each with 3 
planes 
(b)  Covariance ellipses  for separate fits L1
and L2, and combined Lcomb
(c) lnLprof as function of a, for all 3 lines
(d) bbest as a function of a 

bbest

a

(d)
L1 L2

N.B. bbest for L1 and L2 are the same

*** Combining Lprof for L1 and 
L2 loses a lot of information,  
and abest wrong ***** 20



COSMOLOGY EXAMPLE

Plot of dark energy fraction v  dark 
matter fraction by various methods. 
Each determines  dark energy 
fraction poorly, but combination is 
fine, because of different 
correlations.

Combining Profile Likelihoods 
would give very large uncertainty 
on dark energy fraction. 
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NORMALISATION FOR LIKELIHOOD

ò dx )|P(x µ

t

MUST be independent of µ

Missing  1/t

/)|( tt -= tetPINCORRECT

t infinite

t too large

t about right

Data      Param

Exponential Distribution
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QUOTING UPPER LIMIT

“We observed no significant signal, and our 90% conf 
upper limit is …..”

Need to specify method   e.g.
L

Chi-squared (data or theory error)

Frequentist  (Central or upper limit)

Feldman-Cousins

Bayes with prior = const, 

“Show your L”
1) Not always practical

2) Not sufficient for frequentist methods 
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90% C.L. Upper Limits

x

µ

x0

For Upper Limits

For 2-sided intervals
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ΔlnL = -1/2 rule
If L(μ) is Gaussian, following definitions of σ are 

equivalent:
1) RMS of L(µ)

2) 1/√(-d2L/dµ2)

3) ln(L(μ0±σ) = ln(L(μ0)) -1/2
If L(μ) is non-Gaussian, these are no longer the same
“Procedure 3) above still gives interval that contains the 

true value of parameter μ with 68% probability”

Heinrich: CDF note 6438 (see CDF Statistics 
Committee Web-page)

Barlow: Phystat05



Coverage

* What it is:
For given statistical method applied to many sets of data to extract  
confidence intervals for param µ, coverage C is fraction of ranges that 
contain true value of param.      Can vary with µ

* Does not apply to your data:
It is a property of the statistical method used
It is NOT a probability statement about whether µtrue lies in your 
confidence range for µ

* Coverage plot for Poisson counting expt
Observe n counts
Estimate µbest from maximum of likelihood                               µ

L(µ) = e-µ µn/n!    and range of µ from   ln{L(µbest)/L(µ)} < 0.5
For each µtrue calculate coverage C(µtrue), and compare with nominal 68%26

68%
C(µ)

μtrue μ

Ideal coverage 
plot
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COVERAGE

How often does quoted range for parameter include param’s true value?

N.B. Coverage is a property of METHOD, not of a particular exptl result

Coverage can vary with μ

Study coverage of different methods of Poisson parameter  μ, from 
observation of number of events n

Hope for:
Nominal
value

100%

µ

)(µC
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COVERAGE

If true for all      :      “correct coverage” µ

P<     for some        “undercoverage”                               a µ
(this is serious !)

P>     for some        “overcoverage” a µ
Conservative

Loss of rejection 
power



30

Coverage : L approach (Not Neyman construction)

P(n,μ) = e-μμn/n!    (Joel Heinrich CDF note 6438)

-2 lnλ< 1         λ = P(n,μ)/P(n,μbest)       UNDERCOVERS
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Neyman central intervals, NEVER undercover
(Conservative at both ends)
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Feldman-Cousins Unified intervals

Neyman construction so NEVER undercovers
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Probability ordering

Frequentist, so NEVER undercovers
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χ2 = (n-µ)2/µ         Δ χ2 = 0.1              24.8% coverage?

NOT Neyman :  Coverage = 0% à 100%
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Great?Good?Bad

Lmax

Frequency

Unbinned Lmax and Goodness of Fit?

Find params by maximising L

So larger L better than smaller L

So Lmax gives Goodness of Fit??

Monte Carlo distribution

of unbinned Lmax
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Not necessarily:                                                       pdf
L(data,params) 

fixed    vary                                                                L
Contrast    pdf(data,params)                param

vary  fixed

e.g. p(λ) = λ exp(-λt)                                                                                    data

Max at t = 0                                                                                Max at λ=1/t
p L

t λ

t
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Example 1

Fit exponential to times t1, t2 ,t3 …….            [ Joel Heinrich, CDF 5639 ]

L =  π λ exp(-λti)

lnLmax = -N(1 + ln tav)

i.e. Depends only on AVERAGE t, but is

INDEPENDENT OF DISTRIBUTION OF t (except for……..)

(Average t is a sufficient statistic)

Variation of Lmax in Monte Carlo is due to variations in samples’ average t , but

NOT TO BETTER OR WORSE FIT

pdf

Same average t            same Lmax

t
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Example 2

L =

cos θ

pdf (and likelihood) depends only on cos2θi

Insensitive to sign of cosθi

So data can be in very bad agreement with expected distribution

e.g. all data with cosθ < 0 

and Lmax does not know about it.

Example of general principle

3/1
cos1

cos

2

a+
qa+

=
qd

dN

Õ a+
Ja+

i
3/1

cos1 i2
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Example 3

Fit to Gaussian with variable μ, fixed σ

lnLmax = N(-0.5 ln2π – lnσ) – 0.5 Σ(xi – xav)2 /σ2

constant           ~variance(x)

i.e. Lmax depends only on variance(x),

which is not relevant for fitting μ (μest = xav)

Smaller than expected variance(x) results in larger Lmax

x x

Worse fit, larger Lmax Better fit, lower Lmax

}{
2

2
1e x p

2
1

÷÷
ø

ö
çç
è

æ
s

µ-
-

ps
=

xp d f



40

Lmax and Goodness of Fit?

Conclusion:

L has sensible properties with respect to parameters

NOT with respect to data

Lmax within Monte Carlo peak is NECESSARY

not SUFFICIENT

(‘Necessary’ doesn’t mean that you have to do it!)
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Binned data and Goodness of Fit using L-ratio

Õ µ

i
iP n i )(ni L =  

μi                                                         Lbest

x

ln[L-ratio] = ln[L/Lbest]

large μi -0.5c2 i.e. Goodness of Fit    

Lbest  is independent of parameters of fit,

and so same parameter values from L or L-ratio

Baker and Cousins, NIM A221 (1984) 437

)(

),(

i

i

n

i

nP

bestiP n i

iÕ
Õ

=

µ=

pni(µi)

pni(µi,best)

pni(ni)
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L and pdf

Example 1: Poisson
pdf = Probability density function for observing n, given μ

P(n;μ) = e -μ μn/n!
From this, construct L as

L(μ;n) = e -μ μn/n!
i.e. use same function of μ and n, but            .  .  .  .  .  .  .  .  .  . pdf

for pdf, μ is fixed,   but
for L,    n is fixed                             μ L

n

N.B. P(n;μ) exists only at integer non-negative n
L(μ;n) exists only as continuous function of non-negative μ
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Example 2      Lifetime distribution

pdf     p(t;λ) = λ e - λt

So       L(λ;t) =  λ e –λt (single observed t)

Here both t and λ are continuous

pdf maximises at t = 0

L maximises at λ = t

N.B. Functional form of p(t) and L(λ) are different

Fixed λ Fixed t

p                                                                 L

t                                                                 λ
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Example 3:     Gaussian

N.B. In this case, same functional form for pdf and L

So if you consider just Gaussians, can be confused between pdf and L

So examples 1 and 2 are useful 

}{ 2

2

2
)(e x p

2
1);(

s
µ-

-
ps

=µ
xxp d f

}{ 2

2

2
)(e x p

2
1);(

s
µ-

-
ps

=µ
xxL

pdf(x;µ) = exp{-(x-µ)2/2s2} /(sÖ2p)

L(µ;x)     = exp{-(x-µ)2/2s2} /(sÖ2p)
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Transformation properties of pdf and L

Lifetime example:  dn/dt = λ e –λt

Change observable from t to y = √t

So (a) pdf changes, BUT
(b) 

i.e. corresponding integrals of pdf are 
INVARIANT

2
2 yey

dy
dt

dt
dn

dy
dn l-l==

dy
dy
dndt

dt
dn

tt òò
¥¥

=
00
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Now for Likelihood

When parameter changes from λ to τ = 1/λ

(a’) L does not change

dn/dt = (1/τ) exp{-t/τ}

and so L(τ;t)  =  L(λ=1/τ;t)

because identical numbers occur in evaluations of the two L’s

BUT

(b’) 

So it is NOT meaningful to integrate L

(However,………)

òò
¥

t

l

tt¹ll
0

0

);();(
0

dtLdtL
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pdf(t;λ) L(λ;t)

Value of 
function

Changes when 
observable is 
transformed

INVARIANT wrt 
transformation 
of parameter

Integral of 
function

INVARIANT wrt 
transformation 
of observable

Changes when 
param is 
transformed

Conclusion Max prob 
density not very 
sensible

Integrating L
not very 
sensible
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CONCLUSION:

NOT recognised statistical procedure

[Metric dependent:

τ range agrees with τpred

λ range inconsistent with 1/τpred ]

BUT

1) Could regard as “black box”

2) Make respectable by L                Bayes’ posterior 

Posterior(λ) ~ L(λ)* Prior(λ)             [and Prior(λ) can be constant]

ò a=
u

l

p

p
dpL
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Getting L wrong: Punzi effect
Giovanni Punzi @ PHYSTAT2003
“Comments on L fits with variable resolution”

Separate two close signals, when resolution σ varies event 
by event, and is different for 2 signals

e.g. 1) Signal 1     1+cos2θ
Signal 2      Isotropic
and different parts of detector give different σ

2) M (or τ)
Different numbers of tracks à different σM (or στ)
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Events characterised by xi and σi

A events centred on x = 0

B events centred on x = 1

L(f)wrong = Π [f * G(xi,0,σi) + (1-f) * G(xi,1,σi)]

L(f)right = Π [f*p(xi,σi;A) + (1-f) * p(xi,σi;B)]

p(S,T) = p(S|T) * p(T)

p(xi,σi|A) = p(xi|σi,A) * p(σi|A)

= G(xi,0,σi) * p(σi|A)

So

L(f)right = Π[f * G(xi,0,σi) * p(σi|A) + (1-f) * G(xi,1,σi) * p(σi|B)]

If p(σ|A) = p(σ|B), Lright = Lwrong

but NOT otherwise
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Punzi’s Monte Carlo for             A :  G(x,0,sA)

B :  G(x,1,sB)

fA = 1/3 

Lwrong                                         Lright         

sA sB                                           fA sf fA sf 

1.0               1.0                    0.336(3)    0.08             Same

1.0 1.1                    0.374(4)    0.08 0. 333(0)    0

1.0 2.0 0.645(6)    0.12 0.333(0) 0

1 à 2        1.5 à3                 0.514(7)    0.14             0.335(2)   0.03

1.0            1 à 2                 0.482(9)    0.09             0.333(0)    0

1)  Lwrong   OK for  p(sA) = p(sB) , but otherwise BIASSED

2)  Lright unbiassed, but  Lwrong biassed  (enormously)!

3)  Lright gives smaller σf than Lwrong
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Explanation of Punzi bias
σA = 1 σB = 2

A events with σ = 1

B events with σ = 2

x  à x à

ACTUAL DISTRIBUTION                             FITTING FUNCTION

[NA/NB variable, but same for A and B events]

Fit gives upward bias for NA/NB because  (i) that is much better for A events; and 

(ii) it does not hurt too much for B events  
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Another scenario for Punzi problem: PID
A      B                                       π K

M                                            TOF
Originally:

Positions of peaks = constant K-peak à π-peak at large momentum

σi variable,   (σi)A  =  (σi)B σi ~ constant,    pK =  pπ

COMMON FEATURE: Separation/Error = Constant

Where else??
MORAL: Beware of event-by-event variables whose pdf’s do not 

appear in L
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Avoiding Punzi Bias
BASIC RULE:
Write pdf for ALL observables, in terms of parameters

• Include p(σ|A) and p(σ|B) in fit
(But then, for example, particle identification may be determined more 
by momentum distribution than by PID)

OR
• Fit each range of σi separately, and add (NA)i à

(NA)total, and similarly for B

Incorrect method using Lwrong uses weighted average 
of (fA)j, assumed to be independent of j 

Talk by Catastini at PHYSTAT05
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Conclusions

How it works, and how to estimate uncertainties

D(ln L) = 0.5 rule and coverage

Several Parameters

Likelihood does not guarantee coverage

Unbinned Lmax and Goodness of Fit

Use correct L (Punzi effect)


