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Least squares best fit
Resume of straight line
Correlated uncertainties
Uncertainties in x and in y
Goodness of fit with 2
Errors of first and second kind
Kinematic fitting

Toy example
THE paradox



Least Squares Straight Line Fitting
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Data = {Xi, Yi iGVi} I

1) Does it fit straight line?
(Goodness of Fit)

2) What are gradient and intercept?

(Parameter Determination)
Do 2) first

N.B.1 Can be used for non “a+bx”
e.g. a + b/x + c/x?
N.B.2 Least squares is not the only method
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0, is supposed to be ‘uncertainty on data if it
agreed with theory’ *

Usually taken as ‘uncertainty on expt’

1) Makes algebra simpler

i) If theory ~ expt, not too different

If theory and data OK:
yth ~ yops 5 S small
Minimise S = best line
Value of S, = how good fit is
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Straight Line Fit
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(4D = a+ b
N.B. L.S.B.F. passes through (<x>, <y>)
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Uncertainties on intercept and gradient

First Cromt Folm Se (¢ X > —n O

= n'+ hx'
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Better to use x’ because
uncertainties on a’ and b are UNCORRELATED
Contrast uncertainties on a and b are CORRELATED

That is why track parameters specified at track ‘centre’



Covariance(a,b) ~ -<x>
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<x> negative
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See lecture
T on Cov Matrix
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Measurements with correlated uncertainties e.g. systematics?
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STRAIGHT LINE: Uncertainties on x and on y
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Comments on Least Squares method

1) Need to bin
Beware of too few events/bin (Want Poisson ~ Gaussian)

2) Extends to n dimensions >
but needs lots of events for n larger than 2 or 3
3) No problem with correlated uncertainties
4) Can calculate S, “on line” i.e. single pass through data
2 (yi—a—bx)? /02 = [y#] — b [xyi] —a [y]]
5) For theory linear in params, analytic solution 4

6) Goodness of Fit * * * ¢ ! I

X—>»

Individual events | yi£0; v X;
(e.g.incosB) |(eg. stars)

1) Need to bin? | Yes No need

4) v2 on line First histogram Yes
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Moments Max Like Least squares

Easy? Yes, if... Normalisation, Minimisation
maximisation messy

Efficient? Not very Usually best Sometimes = Max Like
Input Separate events Separate events Histogram
Goodness of fit Messy No (unbinned) Easy
Constraints No Yes Yes
N dimensions Easy if .... Norm, max messier Easy
Weighted events Easy Errors difficult Easy
Bgd subtraction Easy Troublesome Easy

Uncertainty
estimates

Observed spread,
or analytic

82I }
aplapj

{ 32s }-1/2
28p,8pJ

Main feature

Easy

Best

Goodness of Fit
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‘Goodness of Fit’ by parameter testing?

1+Bcos?0 Isp=07?

‘Distribution testing’ is better
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Goodness of Fit: y? test

1) Construct S and minimise wrt free parameters
2) Determine v =no. of degrees of freedom
v=n-—p
n = no. of data points
p = no. of FREE parameters
3) Look up probability that, for v degrees of freedom,
X* Z Sin
Works ASYMPTOTICALLY, otherwise use MC

[Assumes y; are GAUSSIAN distributed with mean y;

and variance ¢;?]
21



Properties of mathematical y? distribution:

X =V
6*(x*) = 2v

SoS,,,>v+3V2vis LARGE

€.g. S, = 2200 for v =2000?
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v> with v degrees of freedom?

v = data — free parameters ?

Why asymptotic (apart from Poisson = Gaussian) ?
a) Fit flatish histogram with

y =N {1 +10° cos(x-x))} x,= free param

b) Neutrino oscillations: almost degenerate parameters
y ~1— A sin?(1.27 Am? L/E) 2 parameters
+1—A (1.27 Am? L/E)? 1 parameter

24
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Goodness of Fit

v2  Very general
Needs binning
Not sensitive to sign of deviation

Run Test -

Kolmogorov-Smirnov

Aslan and Zech
Durham IPPP Stats Conf

25
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Goodness of Fit:
Kolmogorov-Smirnov

Compares data and model cumulative plots 100 NCIRMAL RANDOM NUMBERS
(or 2 sets of data)

Uses largest discrepancy between dists.

Model can be analytic or MC sample

s
>
-~

ECDF
Normal CDF

05

CUMULATIVE PROBABILITY

Uses individual data points e
Not so sensitive to deviations in tails T

(so variants of K-S exist)
Not readily extendible to more dimensions
Distribution-free conversion to p; depends on n

(but not when free parameters involved — needs MC)
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Goodness of fit: ‘Energy’ test

Assign +ve charge to data <~ ; -ve charge to M.C.*

Calculate ‘electrostatic energy E’ of charges

If distributions agree, E ~ 0 T <<>>+ +jﬁ(*
If distributions don’t overlap, E is positive vy % j;i & ¢
Assess significance of magnitude of E by MC < 1 i\\( = *
WX s
SN My
+
N.B. Vi—>

1) Works in many dimensions

2) Needs metric for each variable (make variances similar?)

3) E~2qqf(Ar=|ri—rx|), f="1/(Ar+ ¢€)or-In(Ar + g)
Performance insensitive to choice of small €

See Aslan and Zech’s paper at:

http://www.ippp.dur.ac.uk/Workshops/02/statistics/program.shtmi
27



Wrong Decisions

Error of First Kind

Reject HO when true
Should happen x% of tests

Errors of Second Kind
Accept HO when something else is true
Frequency dependson .........
1) How similar other hypotheses are
e.g. HO=p
Alternatives are: ¢ T K p
ii) Relative frequencies: 10+ 10+ 1 0.1 0.1

Aim for maximum efficiency «— Low error of 15t kind
maximum purity «—— Low error of 2™ kind

As 2 cut tightens, efficiency t and purity |

Choose compromise

28



How serious are errors of 1st and 2"9 kind?

1) Result of experiment
e.g Is spin of resonance = 27
Get answer WRONG
Where to set cut?
Small cut =) Reject when correct
Large cut == Never reject anything
Depends on nature of HO e.g.
Does answer agree with previous expt?
Is expt consistent with special relativity?

2) Class selector e.g. b-quark / galaxy type / y-induced cosmic shower
Error of 15t kind:  Loss of efficiency
Error of 24 kind:  More background
Usually easier to allow for 1st than for 2nd

3) Track finding

29



B KINEMATIC FITTING

q Tests whether observed event is consistent

with specified reaction
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Kinematic Fitting: Why do it?

1) Check whether event consistent with hypothesis [Goodness of Fit]

2) Can calculate missing quantities [Param detn.]

3) Good to have tracks conserving E-P [Param detn.]

4) Reduces uncertainties [Param detn.]
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Kinematic Fitting: Why do it?

1) Check whether event consistent with hypothesis  [Goodness of Fit]
Use S,,, and ndf

2) Can calculate missing quantities [Param detn.]
e.g. Can obtain |P| for short/straight track, neutral beam; p,,p,,p, of outgoing v, n, K°

3) Good to have tracks conserving E-P [Param detn.]
e.g. identical values for resonance mass from prodn or decay

4) Reduces uncertainties [Param detn.]
Example of “Including theoretical input reduces uncertainties”

33



How we perform Kinematic Fitting ?

Observed event: 4 outgoing charged tracks
Assumed reaction: pp=2pptr

Measured variables: 4-momenta of each track, v,meas
(i.e. 3-momenta & assumed mass)

Then test hypothesis:
Observed event = example of assumed reaction

i.e. Can tracks be wiggled “a bit” to do so?

Tested by:
Smin — Z(Vifitted _ Vimeas)Z/ 02
where v/ittd conserve 4-momenta

(2 over 4 components of each track)
N.B. Really need to take correlations into account

i.e. Minimisation subject to constraints (involves Lagrange Multipliers)
34



Toy example of Kinematic Fit
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=(8)=6(9) = <Nz P

l.e. KINEMATIC FIT -
REDUCED UNCERTAINTIES
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'KINEMATIC' FITTING

Angles of triangle: 6, + 8, + 65 = 180

0, 0, 065
Measured 50 60 731 Sum=183
Fitted 49 59 72 180

x> =(50-49)%/12+1+1=3

Prob {y?; >3} =8.3%
ALTERNATIVELY:

Sum =183 + 1.7, while expect 180

Prob {Gaussian 2-tail area beyond 1.73c} = 8.3%
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THE PARADOX

Histogram with 100 bins
Fit with 1 parameter
St x* with NDF =99 (Expected y? =99 + 14)

For our data, S,;,(pg) = 90
Is p, acceptable if S(p,) = 1157

1) YES. Very acceptable y? probability

2) NO. o, from S(p, +c,) = S;;, +1 =91
But S(p2) — S(po) = 25
S0 p, is 50 away from best value

38



39



