χ^2 and Goodness of Fit

Louis Lyons Imperial College & Oxford

TRISEP

June 2021

Least squares best fit **Resume of straight line** Correlated uncertainties Uncertainties in x and in y Goodness of fit with χ^2 Errors of first and second kind Kinematic fitting Toy example THE paradox

Least Squares Straight Line Fitting
Data =
$$\{x_i, y_i \pm \delta y_i\}$$

1) Does it fit straight line? (Goodness of Fit)

2) What are gradient and intercept? (Parameter Determination) Do 2) first

N.B.1 Can be used for non "a+bx" e.g. $a + b/x + c/x^2$ N.B.2 Least squares is not the only method

2

$$S = \sum \left(\frac{y_i^{ch} - y_i^{ols}}{\sigma_i} \right)^2$$

σ_i is supposed to be 'uncertainty on data if it agreed with theory' *
Usually taken as 'uncertainty on expt'
i) Makes algebra simpler
ii) If theory ~ expt, not too different

If theory and data OK: $y^{th} \sim y^{obs} \rightarrow S \text{ small}$ Minimise $S \rightarrow \text{ best line}$ Value of $S_{min} \rightarrow \text{ how good fit is}$

Straight Line Fit

(y) = a + 6 <x>

N.B. L.S.B.F. passes through (<x>, <y>)

Uncertainties on intercept and gradient

Better to use x' because uncertainties on a' and b are UNCORRELATED Contrast uncertainties on a and b are CORRELATED

That is why track parameters specified at track 'centre'

Covariance(a,b) ~ -<x>

13

Measurements with correlated uncertainties e.g. systematics?

$$I_{I} = I_{I}$$

$$X \rightarrow Start with 2 uncorrelated
$$m easurements$$

$$S = \left(\frac{1}{p} - \frac{1}{pp}\right)^{2} + \left(\frac{1}{2} - \frac{1}{2}\frac{1}{p}\right)^{2}$$

$$F = Cos \theta - s sin \theta$$

$$f = t cos \theta - s sin \theta$$

$$g = t sin \theta + s cos \theta$$

$$Introduce correlations by
$$h = t cos \theta - s sin \theta$$

$$g = t sin \theta + s cos \theta$$

$$Introduce correlations by
$$f = t cos \theta - s sin \theta$$

$$S = \sigma_{T}^{2} \left(+ cor(b_{T}2) = 0 \right)$$

$$Interms of \sigma_{T}^{2} \sigma_{S}^{2} + cor(t, s)$$

$$\Rightarrow S = \frac{1}{\sigma_{T}^{2} \sigma_{S}^{2} - cor(t, s)} \left[\sigma_{S}^{2} \left(t - \Gamma_{FT} \right)^{2} + \sigma_{T}^{2} \left(s - s_{FT} \right)^{2} - 2 cor(t, s)(t - \Gamma_{FT})(s - s_{FT}) \right]$$

$$Intermediate = H_{in} \left(t - T_{FT} \right)^{2} + H_{in} \left(s - s_{FT} \right)^{2} + 2 H_{in} \left(t - T_{FT} \right) \left(s - s_{FT} \right)$$

$$Show H^{-1} = \left(\sigma_{T}^{2} \sigma_{T}^{2} \right) = \sigma_{TT}^{2}$$

$$F = duces + standord formula in obsence of correlas$$$$$$$$

In general :
$$S = \sum_{ij} \widetilde{\Delta}_i H_{ij} \Delta_j$$

show $\Delta_j = (observe - pred.)_j$ 15

STRAIGHT LINE: Uncertainties on x and on y

i.e. Min of error ellipse tunction

$$\frac{(X-X_i)^2}{\sigma_{x_i}^2} + \frac{(Y-Y_i)^2}{\sigma_{y_i}^2} = \frac{(Y_i-\alpha-b_{x_i})^2}{\sigma_{y_i}^2+b^2\sigma_{x_i}^2}$$
But line by minimising $S = \sum \frac{(Y_i-\alpha-b_{x_i})^2}{\sigma_{y_i}^2+b^2\sigma_{x_i}^2}$
Errors as usual from $\frac{\partial S}{\partial a^2}$ etc
Analytic sche if all σ_{x_i} same, a also σ_{y_i}

Comments on Least Squares method

1) Need to bin

Beware of too few events/bin (Want Poisson ~ Gaussian) 2) Extends to n dimensions \rightarrow

but needs lots of events for n larger than 2 or 3

3) No problem with correlated uncertainties

4) Can calculate S_{min} "on line" i.e. single pass through data

$$\Sigma (y_i - a - bx_i)^2 / \sigma^2 = [y_i^2] - b [x_iy_i] - a [y_i]$$

5) For theory linear in params, analytic solution

6) Goodness of Fit

$$\star \star \star \star$$

	Individual events (e.g. in cos θ)	y _i ±ơ _i v x _i (e.g. stars)	
1) Need to bin?	Yes	No need	
4) χ^2 on line	First histogram	Yes	

	•		
	•		
	•••••		
	•	•	
	• •	•	
,	and the second se		

	Moments	Max Like	Least squares
Easy?	Yes, if	Normalisation, maximisation messy	Minimisation
Efficient?	Not very	Usually best	Sometimes = Max Like
Input	Separate events	Separate events	Histogram
Goodness of fit	Messy	No (unbinned)	Easy
Constraints	No	Yes	Yes
N dimensions	Easy if	Norm, max messier	Easy
Weighted events	Easy	Errors difficult	Easy
Bgd subtraction	Easy	Troublesome	Easy
Uncertainty	Observed spread,	$\int -\frac{\partial^2 I}{\partial^2 I} \int -\frac{1}{2}$	$\int \frac{\partial^2 S}{\partial^2 S} \int -1/2$
estimates	or analytic	∫∂p _i ∂p _j ∫	L2∂p _i ∂p _j ∫
Main feature	Easy	Best	Goodness of Fit

'Goodness of Fit' by parameter testing?

 $1 + \beta \cos^2 \theta$ Is $\beta = 0$?

'Distribution testing' is better

Goodness of Fit: χ^2 test

- 1) Construct S and minimise wrt free parameters
- 2) Determine v = no. of degrees of freedom

v = n - p

n = no. of data points

p = no. of FREE parameters

3) Look up probability that, for ν degrees of freedom, $\chi^2 \geq S_{min}$

Works ASYMPTOTICALLY, otherwise use MC

[Assumes y_i are GAUSSIAN distributed with mean y_i^{th} and variance σ_i^2] Properties of mathematical χ^2 distribution:

e.g. $S_{min} = 2200$ for v = 2000?

χ^2 with v degrees of freedom?

v = data - free parameters ?

Why asymptotic (apart from Poisson \rightarrow Gaussian)? a) Fit flatish histogram with $y = N \{1 + 10^{-6} \cos(x - x_0)\}$ $x_0 = \text{free param}$

b) Neutrino oscillations: almost degenerate parameters $y \sim 1 - A \sin^2(1.27 \Delta m^2 L/E)$ 2 parameters $\xrightarrow{1 - A (1.27 \Delta m^2 L/E)^2}$ 1 parameter Small Δm^2

Goodness of Fit

χ2 Very generalNeeds binningNot sensitive to sign of deviation

Run Test

.

Kolmogorov-Smirnov

× >

Aslan and Zech Durham IPPP Stats Conf

etc

Goodness of Fit: Kolmogorov-Smirnov

Compares data and model cumulative plots (or 2 sets of data) Uses largest discrepancy between dists. Model can be analytic or MC sample

Uses individual data points Not so sensitive to deviations in tails (so variants of K-S exist) Not readily extendible to more dimensions Distribution-free conversion to p; depends on n (but not when free parameters involved – needs MC)

Goodness of fit: 'Energy' test

Assign +ve charge to data \leftrightarrow ; -ve charge to M.C. Calculate 'electrostatic energy E' of charges If distributions agree, E ~ 0 If distributions don't overlap, E is positive Assess significance of magnitude of E by MC

N.B.

- 1) Works in many dimensions
- 2) Needs metric for each variable (make variances similar?)
- 3) $E \sim \sum q_i q_j f(\Delta r = |r_i r_j|)$, $f = 1/(\Delta r + \epsilon)$ or $-\ln(\Delta r + \epsilon)$

Performance insensitive to choice of small $\boldsymbol{\epsilon}$

See Aslan and Zech's paper at: http://www.ippp.dur.ac.uk/Workshops/02/statistics/program.shtml

Wrong Decisions

Error of First Kind

Reject H0 when true Should happen x% of tests

Errors of Second Kind

Accept H0 when something else is true Frequency depends on i) How similar other hypotheses are e.g. $H0 = \mu$ Alternatives are: $e \quad \pi \quad K \quad p$ ii) Relative frequencies: $10^{-4} \ 10^{-4} \ 1 \quad 0.1 \quad 0.1$

 Aim for maximum efficiency ← Low error of 1st kind maximum purity ← Low error of 2nd kind
 As χ² cut tightens, efficiency ↑ and purity ↓
 Choose compromise

How serious are errors of 1st and 2nd kind?

Result of experiment

 e.g Is spin of resonance = 2?
 Get answer WRONG

 Where to set cut?

 Small cut ⇒ Reject when correct
 Large cut ⇒ Never reject anything

 Depends on nature of H0 e.g.

 Does answer agree with previous expt?
 Is expt consistent with special relativity?

2) Class selector e.g. b-quark / galaxy type / γ-induced cosmic shower Error of 1st kind: Loss of efficiency Error of 2nd kind: More background Usually easier to allow for 1st than for 2nd

3) Track finding

Kinematic Fitting: Why do it?

1) Check whether event consistent with hypothesis [Goodness of Fit]

2) Can calculate missing quantities

[Param detn.]

3) Good to have tracks conserving E-P [Param detn.]

4) Reduces uncertainties

[Param detn.]

Kinematic Fitting: Why do it?

1) Check whether event consistent with hypothesis [Goodness of Fit] Use S_{min} and ndf

2) Can calculate missing quantities [Param detn.] e.g. Can obtain |P| for short/straight track, neutral beam; p_x , p_y , p_z of outgoing v, n, K⁰

3) Good to have tracks conserving E-P [Param detn.] e.g. identical values for resonance mass from prodn or decay

4) Reduces uncertainties [Param detn.] Example of "Including theoretical input reduces uncertainties"

How we perform Kinematic Fitting ?

Observed event: 4 outgoing charged tracks Assumed reaction: $pp \rightarrow pp\pi^+\pi^-$

Measured variables: 4-momenta of each track, v_i^{meas} (i.e. 3-momenta & assumed mass) Then test hypothesis:

Observed event = example of assumed reaction

i.e. Can tracks be wiggled "a bit" to do so?

Tested by:

 $S_{min} = \sum (v_i^{fitted} - v_i^{meas})^2 / \sigma^2$

where v_i^{fitted} conserve 4-momenta (Σ over 4 components of each track) N.B. Really need to take correlations into account

i.e. Minimisation subject to constraints (involves Lagrange Multipliers)

Toy example of Kinematic Fit pp - ph 9.7 Fixed target experiment + constraints: 1) Coplanat 2) þ. ar 8. 3) for at 82 4) O, or On - Non-relativistic equal mass elestre sutter : $\partial_1 + \partial_2 = \pi/_2$ Measured $\theta_1^{m} \pm \sigma$ $\theta_2^{m} \pm \sigma$ Fitted θ_1 θ_2 Minimise $S(\theta_1, \theta_2) = (\theta_1 - \theta_1^{-1})^2 + (\theta_2 - \theta_1^{-1})^2$ subject to $C(\theta_1, \theta_2) = \theta_1 + \theta_2 - \pi/2 = 0$ $L_{ayrange}: \frac{\partial S}{\partial \theta_1} + \lambda \frac{\partial C}{\partial \theta_2} = \frac{\partial S}{\partial \theta_2} + \lambda \frac{\partial C}{\partial \theta_2} = 0$ => 3 eques for 9, 9, 2

35

Eque simple to solve because C(Q, D2) linear in D, , D2 $\Rightarrow \theta = \theta^m + t(\chi - \theta^n - \theta_1^m)$ $\theta_{1} = \theta_{1}^{m} + \frac{1}{2} \left(\frac{\pi}{2} - \theta_{1}^{m} - \theta_{1}^{m} \right)$ $\sigma(\theta_1) = \sigma(\theta_2) = \sigma/\sqrt{2}$ - 😎

i.e. KINEMATIC FIT → REDUCED UNCERTAINTIES

'KINEMATIC' FITTING

Angles of triangle: $\theta_1 + \theta_2 + \theta_3 = 180$ $\theta_1 \quad \theta_2 \quad \theta_3$ Measured 50 60 73 ± 1 Sum = 183 Fitted 49 59 72 180 $\chi^2 = (50-49)^2/1^2 + 1 + 1 = 3$ Prob $\{\chi^2_1 > 3\} = 8.3\%$ **ALTERNATIVELY:** Sum = 183 ± 1.7 , while expect 180 Prob{Gaussian 2-tail area beyond 1.73σ } = 8.3%

THE PARADOX

Histogram with 100 bins Fit with 1 parameter S_{min} : χ^2 with NDF = 99 (Expected $\chi^2 = 99 \pm 14$)

For our data, $S_{min}(p_0) = 90$ Is p_2 acceptable if $S(p_2) = 115$?

1) YES. Very acceptable χ^2 probability

2) NO. $\sigma_p \text{ from } S(p_0 + \sigma_p) = S_{\min} + 1 = 91$ But $S(p_2) - S(p_0) = 25$ So p_2 is 5 σ away from best value

