ong Baseline Oscillations Part 1

Deborah Harris (she/hers) York University / Fermilab 17 June 2021 TRISEP School

orah Harris: Long Baseline Neutrino Oscillations

Goals of these Lectures

- 1st Goal: give you an understanding of how to make LONG BASELINE measurements of a particle that is
 - Neutral
 - Almost never interacts
- "Long Baseline" is in the eye of the beholder
 - Solar
 - Reactor
 - Atmospheric
 - Accelerator-based

Schedule

- First Lecture
 - Reminders from Monday's lectures:
 - What do we want to measure with neutrinos, again?
 - What does "long baseline" mean?
 - What neutrino sources are available?
 - How do neutrinos interact?
- Second Lecture
 - What can neutrino detectors measure?
 - Putting it all together—the 2-detector experiment
 - Where are we now? (T2K and NOvA)
 - Next Steps for long baseline oscillations: (DUNE and HyperK)

(at "long

baseline"

energies)?

What are the parameters we want to measure?

- 1. Neutrino Masses
 - A. Absolute
 - B. Relative
- 2. Nature of Neutrinos: Majorana or Dirac?
- 3. Neutrino Mixing Matrix
 - 1. 3 rotation angles and 1 CP-violating phase
 - 2. Is the matrix unitary?
 - 3. Is this a 3x3 matrix, or are there other generations out there?

What are the parameters that we want to measure?

- 1. Neutrino Masses
 - A. Absolute
 - B. Relative

Already covered by Michelle and Steve

- 2. Nature of Neutrinos: Majorana or Dirac?
- 3. Neutrino Mixing Matrix
 - 1. 3 rotation angles and 1 CP-violating phase
 - 2. Is the matrix unitary?
 - 3. Is this a 3x3 matrix, or are there other generations out there?

What are the parameters that we want to measure?

1. Neutrino Masses

A. Absolute

B. Relative

To be covered today

- 2. Nature of Neutrinos: Majorana or Dirac?
- 3. Neutrino Mixing Matrix
 - 1. 3 rotation angles and 1 CP-violating phase
 - 2. Is the matrix unitary?
 - 3. Is this a 3x3 matrix, or are there other generations out there?

Do we really understand flavor?

• Simplistic way of describing mixing matrix

Lesson Learned from CKM: 3 mixing angles and a phase Call them $\theta_{12}, \theta_{23}, \theta_{13}, \delta$ if $s_{ij} = \sin \theta_{ij}, c_{ij} = \cos \theta_{ij}$, then

Additional Complication: Matter Effects

 The oscillation probability changes differently for electron neutrinos vs antineutrinos when they propagate through matter in a straightforward way

- Can't treat neutrinos propagating through earth simply as mass eigenstates, have to take into account electron flavor
- This would give an apparent CP violation just because the earth is not CP-symmetric

Additional Complication: Matter Effects, with math...

Remember the 2-generation formula?

v Oscillation Probabilities

- v_{μ} Disappearance: $1 \sin^2 2\theta_{23} \sin^2(\Delta m_{32}^2 L/4E)$
- v_e Disappearance:

$$P_{\bar{\nu}_{e} \to \bar{\nu}_{e}} \approx 1 - \frac{\sin^{2} 2\theta_{13}}{\sin^{2} (\Delta m_{31}^{2} L / 4E)} - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} (\Delta m_{21}^{2} L / 4E)$$

• v_e appearance in a v_μ beam: even more complicated...

•
$$P(\nu_{\mu} \rightarrow \nu_{e}) = P_{1} + P_{2} + P_{3} + P_{4}$$

 $P_{1} = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \left(\frac{\Delta_{13}}{B_{\pm}}\right)^{2} \sin^{2} \frac{B_{\pm}L}{2}$

$$P_{2} = \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^{-} \sin^{2} \frac{AL}{2}$$

$$P_{3} = J \cos \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \cos \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$$

$$P_{4} = \mp J \sin \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \sin \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$$

Deborah Harris: Long Baseline Neutrino Oscillations

10

Minakata & Nunokawa JHEP 2001

To measure probabilities, need...

- Neutrino Flavor
- Distance between creation and detection
- Neutrino Energy
 - No source we can use today is monochromatic!
 - Initial state: neutrino plus nucleon or electron
 - Final state: a bunch of stuff you only measure so well, sometimes you only measure the charged lepton
- Neutrino or Antineutrino?
 - Accelerator-based beams are always a mixture of both
 - Atmospheric neutrinos are also a mixture
 - Reactors and the sun are only one or the other

Measuring Oscillation Probabilities

For a given number of signal v_x events in a detector, Assuming you are starting with a source of v_y :

$$N = \varphi_{v_y} \sigma_{v_x} P(v_y \to v_x) \varepsilon_x M$$

 ϕ =flux, σ = cross section ϵ =efficiency M=detector mass

$$P(\nu_{\mu} \rightarrow \nu_{x}) = \frac{N}{\varphi_{\nu_{\mu}}\sigma_{\nu_{x}}\varepsilon_{x}M}$$

Neutrino Sources

- Key Parameters:
 - Flux
 - Energy
 - Baseline(s) available
 - Neutrino Beam Flavor and Helicity Composition
 - Sensitive to Matter Effects?
 - What do the neutrinos travel through between production and detection

Atmospheric Neutrinos

Atmosphere

ALL STREET, CONTRACTOR

What is known well

What else is known well: up/down

Zenith angle

Up/down ratio very close to 1.0 and accurately calculated (1% or better) above a few GeV.

Experimental Challenges with Atmospheric Fluxes

- Absolute rates are hard to predict
- Overall rates are low and steeply falling in energy
- Near equal mix of neutrino and antineutrino means CP violation measurement is near impossible
- Thought question: how might you be able to see matter effects using atmospheric neutrinos? Do you NEED a magnetic field in your detector?

Neutrinos from Accelerators

- Atmospheric Neutrino Beam:
 - High energy protons strike atmosphere
 - Pions and kaons are produced
 - Pions decay before they interact
 - Muons also decay

e`.

Cosmic ray (p, He, ...)

μ

 v_{μ}

Ve

Example: NuMI beamline at Fermilab

Major Components:

- Proton Beam
- Pion Production Target
- Focusing System
- Decay Region
- Absorber
- •Shielding...

Most v_{μ} 's from 2-body decays: $\pi^{+} \rightarrow \mu^{+} v_{\mu}$ $K^{+} \rightarrow \mu^{+} v_{\mu}$ Most v_{e} 's from 3-body decays: $\mu^{+} \rightarrow e^{+} v_{e} v_{\mu}$ $K^{+} \rightarrow \pi^{0} e^{+} v_{e}$

Proton beam Basics

- Rules of Thumb
 - number of pions produced is roughly a function of "proton power" (or total number of protons on target x proton energy)
 - The higher energy v beam you want, the higher energy p you need

Proton Source	Experiment	Proton Energy (GeV)	p/yr	Power (MW)	Neutrino Energy (GeV)
KEK	K2K	12	$1 \times 10^{20}/4$	0.0052	1.4
FNAL Booster	SBN	8	5×10^{20}	0.05	1
FNAL	MINOS and	120	3-6×10 ²⁰	0.835!!	3-17
Main Injector	NOvA				
CNGS	OPERA	400	0.45×10^{20}	0.48	25
J-PARC	T2K	30	11×10 ²⁰	0.522	0.77

Late-breaking News: June 14: NuMI achieved new power record: 835kW for 1 hour

Neutrino Production Targets

- Have to balance many competing needs:
 - The longer the target, the higher the probability the protons will interact
 - The longer the target, the more the produced particles will scatter
 - The more the protons interact, the hotter the target will get—targeting above ~1MW not easy!
 - Rule of thumb: want target to be 3 times wider than +- 1 sigma of proton beam size

Deborah Harris: Long Baseline Neutrino Oscillations

Making pions from a beam of protons

- This is tricky stuff, hard to predict with theory alone
- Copious thin target measurements available, but neutrino targets are usually long
- NA61/SHINE data from CERN: thin and thick target data used for T2K, NuMI, DUNE analysis
 - Starting to publish now, more data expected
- At right: NA49 data from CERN, 158GeV
- EMPHATIC experiment at Fermilab: thin target measurements, to be used by HyperK and DUNE

Focusing Systems

- Want to focus as many particles as possible for highest neutrino flux
- Typical transverse momentum of secondaries: approximately $\Lambda_{\rm QCD}$, or about 200MeV
- Minimize material in the way of the pions you've just produced
- What kinds of magnets are there?
 - Dipoles—no, they won't focus
 - Quadrupoles
 - done with High Energy neutrino beams
 - focus in vertical or horizontal, need pairs of them
 - they will focus negative and positive pions simultaneously

What focusing works best?

- Imagine particles flying out from a target:
 - When particle gets to front face of horn, it has transverse momentum proportional to radius at which it gets to horn

B Field from line source of current is

in the Φ direction

but has a size proportional to 1/r

How do you get around this? (hint: $\partial pt \propto B \times \partial l$

What should the B field be?

- Make the particles at high radius go through a field for longer than the particles at low radius. (B \propto 1/r, but make dl \propto r²)
- Horn: a 2-layered sheet conductor
- No current inside inner conductor, no current outside outer conductor
- Between conductors, toroidal field proportional to 1/r

Horn Photo Album

	Length (m)	Diameter (m)	# in beam
K2K	2.4,2.7	0.6,1.5	2
MBooNE	~1.7	~0.5	1
NuMI	3,3	0.3,0.7	2
CNGS	6.5m	0.7	2
Т2К	1.4,2,2.5	.47,.9,1.4	3

Deporal Harrist Long Baseline Neutrino Oscillations

 \mathbf{G}

o

vides the 180kA is almost as

 gning the horn itself!

NOTE BIN

Decay Regions

- How long a decay region you need (and how wide) depends on what the energy of the pions you' re trying to focus.
- The longer the decay region, the more muon decays you'll get (per pion decay) and the larger v_e contamination you'll have
- What is better: air, vacuum window, or Hefilled decay pipe? Does it depend on energy?

	Length	Diameter
BNB	50m	1.8m
NuMI	675m	2m
CNGS	1000m	2.45m
T2K	130m	Up to 5.4m

Deborah Harris: Long Baseline Neutrino Oscillations

Beamline Decay Pipe Comparison

Can show that neglecting things hitting the side of the decay pipe...

$$\frac{\Phi(\nu_{e})}{\Phi(\nu_{\mu})} = \frac{Lm_{\mu}c}{E_{\pi}\tau_{\mu}} \left(\frac{1}{e^{y_{\pi}}-1} + 1 - \frac{1}{y_{\pi}}\right)$$

 $y_{\pi} \text{=} \text{the number of pion lifetimes in one decay pipe...}$

	Length	E_{π} (GeV)	yπ	y_{μ}	$\Phi(\nu_e)/\Phi(\nu_\mu)$ (theoretical)
BNB	50m	2.5	0.36	0.3%	0.15%
MINOS	675m	9	1.3	1.2%	0.8%
CNGS	1000m	50	0.36	0.3%	0.15%
Т2К	130m	9	0.47	0.2%	0.10%

Off-Axis Technique

- 1-1 relationship between neutrino energy and pion energy+angle between neutrino and pion
- Off axis neutrino beams: aim pions and kaons AWAY from detector

NOvA

Experimental Challenges with Accelerator-based Neutrinos

- Operations
 - Target and horns must be robust
 - Still working on a target that can survive 1MW beam power
- Composition
 - Can never make pure beam, always some contamination of anti-neutrinos or v_e 's in what you designed as v_μ beam
- Flux Predictions
 - Hadron production uncertainties still at the 5% level even with new data
 - Using different hadron shower models to predict flux gives even higher differences
 - Beamline optics can also introduce uncertainties

Neutrino Source Summary

Source	Flux	v Energy	Composition	Baseline	Matter Effects?
Sun	6x10 ¹⁰ v/cm ² /sec	0.1-10MeV	ν _e (ν ₂)	10 ⁸ km	yes
Reactor	10 ²⁰ v/sec/GW	1-10MeV	Anti- ν_e	1-180km	No but
Atmosphere	1 v/cm²/sec	0.1-10 ⁴ GeV	$\nu_e\text{+}\nu_\mu$ and anti-	80-10 ⁴ km	yes
Accelerator	2x10 ⁶ v/cm²/sec @1km*	0.1-100GeV	$ u_{\mu}$ +% v_{e} or anti- $ u_{\mu}$ +% v_{e}	1-1000km	yes

* NuMI beamline Medium Energy tune on axis, currently x3 higher!

Deborah Harris: Long Baseline Neutrino Oscillations

OKAY, WE HAVE A BEAM OF NEUTRINOS, NOW WHAT?

NEUTRINO INTERACTIONS

Thresholds and Processes

- We detect neutrino interactions only in the final state, and often with poor knowledge of the incoming neutrinos
- Creation of that final state may require energy to be transferred from the neutrino

$$v \longrightarrow Target \longrightarrow Lepton$$

Recoil

- In charged-current reactions, where the final state lepton is charged, this lepton has mass
- The recoil may be a higher mass object than the initial state, or it may be in an excited state

K. McFarland, INSS 2013

Thresholds and Processes

Process	Considerations	Threshold (typical)
vN→vN (elastic)	Target nucleus is often free (recoil is very small) CEvNS!	none
v _e n→e⁻p	In some nuclei (mostly metastable ones), this reaction is exothermic if proton not ejected	None for free neutron some others.
ve→ve (elastic)	Most targets have atomic electrons	~ 10eV – 100 keV
anti-v _e p→e⁻n	m _n >m _p & m _e . Typically more to make recoil from stable nucleus.	1.8 MeV (free p). More for nuclei.
v _ℓ n→ℓ⁻p (quasielastic)	Final state nucleon is ejected from nucleus. Massive lepton	$^{\sim}$ 10s MeV for $\nu_{\rm e}$ +~100 MeV for ν_{μ}
v _ℓ N→ℓ ⁻ X (inelastic)	Must create additional hadrons. Massive lepton.	~ 200 MeV for ν_e +~100 MeV for ν_μ

• Energy of neutrinos determines available reactions, and therefore experimental technique K. McFarland, INSS 2013

Neutrino Electron Elastic Scattering

• Elastic scattering:

$$\nu_{\mu} + e^- \rightarrow \nu_{\mu} + e^-$$

- Recall, EW theory has coupling to left *or* righthanded electron
- Total spin, J=0,1
- Electron-Z⁰ coupling
 - Left-handed: $-1/2 + \sin^2 \theta_W$

$$\sigma \propto \frac{G_F^2 S}{\sigma} \left(\frac{\sin^4 \theta_W}{1} \right)$$

• Right-handed: $sin^2\theta_W$

K. McFarland, INSS 2013

Deborah Harris: Long Baseline Neutrino Oscillations

 π

Neutrino Electron Scattering, cont'd

Ζ

• What are relative contributions of scattering from left *and* right-handed electrons?

What about v_e scattering off e's?

The reaction

 $v_{\mu} + e^{-} \rightarrow v_{\mu} + e^{-}$ has a much smaller cross-section than $v_{e} + e^{-} \rightarrow v_{e} + e^{-}$ Why? $v_{e} + e^{-} \rightarrow v_{e} + e^{-}$ has a second contributing

reaction, charged current

Although rate is higher for v_e , compared to v_μ or v_τ hasn't been used for oscillations at accelerator-based long baseline experiments: why? K. McFarland, INSS 2013

What about protons and neutrons?

Imagine now a proton target Neutrino-proton elastic scattering: $\nu_{e} + p \rightarrow \nu_{e} + p$ – "Inverse beta-decay" (IBD): anti- $v_{P} + p \rightarrow e^{+} + n$ – and "stimulated" beta decay: $v_{e} + n \rightarrow e^{-} + p$ IBD was the Reines and Cowan discovery signal Cross section much higher Think of what s is here $(2*m_{target}*E_{v})$ $\sigma \alpha$

K. McFarland, INSS 2013

17 June 2021

 π

Neutrino-Nucleon Scattering

K. McFarland, INSS 2013

Scattering off Nuclei

- The fundamental theory allows a complete calculation of neutrino scattering from quarks
- But those quarks are in nucleons (PDFs), and those nucleons are in a strongly interacting tangle
- Imagine calculating the excitations of a pile of coupled springs. Very hard in general.

K. McFarland, INSS 2013

Summary for Neutrino Interactions

- Total cross section proportional to neutrino energy
- Angular dependence because of v helicity and conservation of spin
 - Consequence: Neutrinos have higher cross section than anti-neutrinos
- v-e scattering is the ONLY perfectly known cross section
 - Everything else is more complicated: NEED BETTER THEORY PREDICTIONS!
- The higher the v energy, the more final state particles produced
 - Need to understand how ν energy shows up in detector, AND backgrounds