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Goals of these Lectures

• 1st Goal:  give you an understanding of how to 
make LONG BASELINE measurements of a 
particle that is 
– Neutral 
– Almost never interacts 

• “Long Baseline” is in the eye of the beholder
– Solar
– Reactor
– Atmospheric
– Accelerator-based
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Schedule
• First Lecture
– Reminders from Monday’s lectures:

• What do we want to measure with neutrinos, again?
– What does “long baseline” mean?
– What neutrino sources are available?
– How do neutrinos interact?

• Second Lecture
– What can neutrino detectors measure?
– Putting it all together—the 2-detector experiment 
– Where are we now?  (T2K and NOvA) 
– Next Steps for long baseline oscillations:  (DUNE and 

HyperK) 
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(at “long 
baseline” 
energies)?



What are the parameters we want to measure?

1. Neutrino Masses
A. Absolute 
B. Relative

2. Nature of Neutrinos:  Majorana or Dirac?
3. Neutrino Mixing Matrix

1. 3 rotation angles and 1 CP-violating phase
2. Is the matrix unitary?  
3. Is this a 3x3 matrix, or are there other 

generations out there? 
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What are the parameters that we want to 
measure?

1. Neutrino Masses
A. Absolute 
B. Relative

2. Nature of Neutrinos:  Majorana or Dirac?
3. Neutrino Mixing Matrix

1. 3 rotation angles and 1 CP-violating phase
2. Is the matrix unitary?  
3. Is this a 3x3 matrix, or are there other 

generations out there? 
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Already covered by 
Michelle and Steve
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What are the parameters that we want to 
measure?

1. Neutrino Masses
A. Absolute 
B. Relative

2. Nature of Neutrinos:  Majorana or Dirac?
3. Neutrino Mixing Matrix

1. 3 rotation angles and 1 CP-violating phase
2. Is the matrix unitary?  
3. Is this a 3x3 matrix, or are there other 

generations out there? 
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To be covered today
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Do we really understand flavor?

• Simplistic way of describing mixing matrix
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Additional Complication:  
Matter Effects

• The oscillation probability changes differently for 
electron neutrinos vs antineutrinos when they 
propagate through matter in a straightforward way

8

Wolfenstein, 
PRD (1978)

• Can’t treat neutrinos propagating through earth simply as mass 
eigenstates, have to take into account electron flavor

• This would give an apparent CP violation just because the earth is 
not CP-symmetric
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Additional Complication:  
Matter Effects, with math…

• Remember the 2-generation formula?

9

Wolfenstein, 
PRD (1978)
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n Oscillation Probabilities
• nµ Disappearance: 1-sin22q23sin2(Dm2

32L/4E)
• ne Disappearance:

• ne appearance in a nµ beam:  even more 
complicated… 

• P(nµ→ne)=P1+P2+P3+P4
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To measure probabilities, need…
• Neutrino Flavor  
• Distance between creation and detection
• Neutrino Energy
– No source we can use today is monochromatic!
– Initial state:  neutrino plus nucleon or electron
– Final state:  a bunch of stuff you only measure so well, 

sometimes you only measure the charged lepton 
• Neutrino or Antineutrino?
– Accelerator-based beams are always a mixture of both
– Atmospheric neutrinos are also a mixture
– Reactors and the sun are only one or the other
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Measuring Oscillation Probabilities

N =ϕ
ν y
σν x

P(ν y →ν x )εxM

P(νµ →ν x ) =
N

ϕ
νµ
σν x

εxM

f=flux, s= cross section e=efficiency M=detector mass
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For a given number of signal nx events in a detector,
Assuming you are starting with a source of ny:  
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Neutrino Sources

• Key Parameters: 
– Flux
– Energy
– Baseline(s) available 
– Neutrino Beam Flavor and Helicity Composition
– Sensitive to Matter Effects? 

• What do the neutrinos travel through between 
production and detection
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Atmospheric Neutrinos
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Atmosphere



What is known well
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(nµ+ nµ)/(ne+ ne)

ünµ/ne ratio is calculated to an accuracy of 
about 2% below ～5GeV.

ün and anti-n ratios also accurately 
calculated.
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What else is known well:  up/down
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Zenith angle

Up-going Down
cosqzenith

Up/down ratio very close to 1.0 and accurately calculated 
(1% or better) above a few GeV. 
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Experimental Challenges with 
Atmospheric Fluxes

• Absolute rates are hard to predict
• Overall rates are low and steeply falling in 

energy
• Near equal mix of neutrino and antineutrino 

means CP violation measurement is near 
impossible

• Thought question:  how might you be able to 
see matter effects using atmospheric 
neutrinos?  Do you NEED a magnetic field in 
your detector?  
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Neutrinos from Accelerators
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• Atmospheric Neutrino Beam:
– High energy protons strike atmosphere
– Pions and kaons are produced
– Pions decay before they interact
– Muons also decay

• Conventional Neutrino Beam:  very similar!



Example:  NuMI beamline at Fermilab
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Major Components:
•Proton Beam
•Pion Production Target
•Focusing System
•Decay Region
•Absorber
•Shielding…

Most nµ’s from 2-body decays:
p+→µ+nµ
K+→µ+nµ
Most ne’s from 3-body decays:
µ+→e+nenµ
K+→p0e+ne



Proton beam Basics
• Rules of Thumb

– number of pions produced is roughly a function of “proton power”
(or total number of protons on target x proton energy) 

– The higher energy n beam you want, the higher energy p you need
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Proton Source Experiment Proton 
Energy
(GeV)

p/yr Power
(MW)

Neutrino 
Energy
(GeV)

KEK K2K 12 1´1020/4 0.0052 1.4

FNAL Booster SBN 8 5 ´1020 0.05 1
FNAL
Main Injector

MINOS and 
NOvA

120 3-6´1020 0.835!! 3-17

CNGS OPERA 400 0.45 ´1020 0.48 25

J-PARC T2K 30 11´1020 0.522 0.77

Late-breaking News:  June 14:  NuMI achieved new power record:  835kW for 1 hour 



Neutrino Production Targets
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• Have to balance many 
competing needs:
– The longer the target, 

the higher the 
probability the protons 
will interact

– The longer the target, 
the more the produced 
particles will scatter

– The more the protons 
interact, the hotter the 
target will get—targeting 
above ~1MW not easy! 

– Rule of thumb:  want 
target to be 3 times 
wider than +- 1 sigma of 
proton beam size 

CNGS

NuMI

MiniBooNE

T2K



Making pions from a beam of protons

• This is tricky stuff, hard to 
predict with theory alone

• Copious thin target 
measurements available, but 
neutrino targets are usually 
long

• NA61/SHINE data from CERN:  
thin and thick target data used 
for T2K, NuMI, DUNE analysis
– Starting to publish now, more 

data expected  
• At right:  NA49 data from 

CERN, 158GeV
• EMPHATIC experiment at 

Fermilab:  thin target 
measurements, to be used by 
HyperK and DUNE
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Focusing Systems
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• Want to focus as many particles as possible for 
highest neutrino flux

• Typical transverse momentum of secondaries:  
approximately LQCD, or about 200MeV

• Minimize material in the way of the pions you’ve just 
produced

• What kinds of magnets are there? 
– Dipoles—no, they won’t focus
– Quadrupoles

• done with High Energy neutrino beams
• focus in vertical or horizontal, need pairs of them
• they will focus negative and positive pions simultaneously



What focusing works best? 
• Imagine particles flying out from a target:

– When particle gets to front face of horn, it has transverse 
momentum proportional to radius at which it gets to horn
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B Field from line source of current is 

in the F direction 

but has a size proportional to 1/r  

How do you get around this? (hint:  ¶pt µ B´ ¶l  )



What should the B field be?
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• Make the particles at high radius go through a field for 
longer than the particles at low radius.  (Bµ1/r,  but make 
dl µ r2)

• Horn:  a 2-layered sheet conductor
• No current inside inner conductor, no current outside outer conductor
• Between conductors, toroidal field proportional to 1/r 
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Horn Photo Album
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Length
(m)

Diameter 
(m)

# in 
beam

K2K 2.4,2.7 0.6,1.5 2

MBooNE ~1.7 ~0.5 1

NuMI 3,3 0.3,0.7 2

CNGS 6.5m 0.7 2

T2K 1.4,2,2.5 .47,.9,1.4 3

MiniBooNE

CNGS

NUMI

T2K Horn 1
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Decay Regions
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• How long a decay region you need (and 
how wide) depends on what the energy of 
the pions you’re trying to focus.

• The longer the decay region, the more 
muon decays you’ll get (per pion decay) 
and the larger ne contamination you’ll
have 

• What is better:  air, vacuum window, or He-
filled decay pipe?  Does it depend on 
energy?

Length Diameter
BNB 50m 1.8m
NuMI 675m 2m
CNGS 1000m 2.45m
T2K 130m Up to 5.4m

CNGST2K

NUMI



Beamline Decay Pipe Comparison
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Length Ep (GeV) yp yµ F(ne)/F(nµ)
(theoretical)

BNB 50m 2.5 0.36 0.3% 0.15%

MINOS 675m 9 1.3 1.2% 0.8%

CNGS 1000m 50 0.36 0.3% 0.15%

T2K 130m 9 0.47 0.2% 0.10%
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Off-Axis Technique
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– 1-1 relationship between neutrino 
energy and pion energy+angle
between neutrino and pion 

– Off axis neutrino beams:  aim pions
and kaons AWAY from detector

• T2K and NOvA both use this
T2K

NOvARe
f: 
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Experimental Challenges with 
Accelerator-based Neutrinos

• Operations
– Target and horns must be robust
– Still working on a target that can survive 1MW beam 

power
• Composition

– Can never make pure beam, always some contamination of 
anti-neutrinos or ne’s in what you designed as nµ beam

• Flux Predictions
– Hadron production uncertainties still at the 5% level even 

with new data
– Using different hadron shower models to predict flux gives 

even higher differences
– Beamline optics can also introduce uncertainties
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Neutrino Source Summary
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Source Flux n Energy Composition Baseline Matter 
Effects?

Sun 6x1010

n/cm2/sec
0.1-10MeV ne (n2) 108km yes

Reactor 1020

n/sec/GW
1-10MeV Anti-ne 1-180km No but…

Atmosphere 1 
n/cm2/sec

0.1-104GeV ne+nµ and 
anti-

80-104km yes

Accelerator 2x106

n/cm2/sec
@1km*

0.1-100GeV nµ+%ne
or anti-
nµ+%ne

1-1000km yes

* NuMI beamline  Medium Energy tune on axis, currently x3 higher!



OKAY, WE HAVE A BEAM OF 
NEUTRINOS, NOW WHAT?
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NEUTRINO INTERACTIONS



Thresholds and Processes
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• We detect neutrino interactions only in the final 
state, and often with poor knowledge of the 
incoming neutrinos

• Creation of that final state may require energy to be 
transferred from the neutrino

•
– In charged-current reactions, where the final state lepton is 

charged, this lepton has mass
– The recoil may be a higher mass object than the initial state, 

or it may be in an excited state

ν Target
Lepton
Recoil

K. McFarland, INSS 2013



Thresholds and Processes
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Process Considerations Threshold (typical)

νN→νN (elastic) Target nucleus is often free (recoil is 
very small) CEnNS!

none

νen→e-p In some nuclei (mostly metastable 
ones), this reaction is exothermic if 
proton not ejected

None for free neutron 
some others.

νe→νe (elastic) Most targets have atomic electrons ~ 10eV – 100 keV

anti-νep→e-n mn>mp & me.  Typically more to make 
recoil from stable nucleus.

1.8 MeV (free p).  
More for nuclei.

νℓn→ℓ-p 
(quasielastic)

Final state nucleon is ejected from 
nucleus.  Massive lepton

~ 10s MeV for νe
+~100 MeV for νμ

νℓN→ℓ-X 
(inelastic) 

Must create additional hadrons.
Massive lepton.

~ 200 MeV for νe
+~100 MeV for νμ

• Energy of neutrinos determines available reactions, 
and therefore experimental technique K. McFarland, INSS 2013



Neutrino Electron Elastic Scattering
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• Elastic scattering:
nµ + e-® nµ + e-

– Recall, EW theory has 
coupling to left or right-
handed electron

– Total spin, J=0,1

• Electron-Z0 coupling
§ Left-handed:  -1/2 + sin2qW

§ Right-handed: sin2qW

÷
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Z Couplings gL gR

ne , nµ , nt 1/2 0

e , µ , t -1/2 + sin2qW sin2qW

u , c , t 1/2 - 2/3 sin2qW - 2/3 sin2qW

d , s , b -1/2 + 1/3 sin2qW 1/3 sin2qW

K. McFarland, INSS 2013



Neutrino Electron Scattering, cont’d
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• What are relative 
contributions of 
scattering from left and
right-handed electrons?
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What about ne scattering off e’s?
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The reaction 

nµ + e-® nµ + e-
has a much smaller cross-section than

ne + e-® ne + e-
Why?

ne

e
Z

e

ne

W

ne

e

e

ne

ne + e-® ne + e-
has a second contributing 

reaction, charged current

K. McFarland, INSS 2013

Although rate is higher for ne, compared to nµ or nt hasn’t been used for oscillations at 
accelerator-based long baseline experiments:  why?  



What about protons and neutrons?
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• Imagine now a proton target
– Neutrino-proton elastic scattering:

ne + p ® ne + p
– “Inverse beta-decay” (IBD):

anti-ne + p ® e+ + n
– and “stimulated” beta decay:

ne + n ® e- + p
– IBD was the Reines and

Cowan discovery signal
• Cross section much higher

– Think of what s is here 
(2*mtarget*En)

nany

p
Z

p

nany

ne

p
W

n

e+

K. McFarland, INSS 2013
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Neutrino-Nucleon Scattering

17 June 2021 Deborah Harris:  Long Baseline Neutrino Oscillations 40

Resonance Production

Linear rise with energy

• Charged - Current:  W± exchange
– Quasi-elastic Scattering:

(Target changes but no break up)
nµ + n ® µ- + p

– Nuclear Resonance Production:
(Target goes to excited state)
nµ + n ® µ- + p + p0 (N* or D)

n + p+

– Deep-Inelastic Scattering:
(Nucleon broken up)
nµ + quark ® µ- + quark’

K. McFarland, INSS 2013



Scattering off Nuclei
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• The fundamental theory allows a 
complete calculation of  
neutrino scattering from 
quarks

• But those quarks are in nucleons 
(PDFs), and those nucleons are in 
a strongly interacting tangle

• Imagine calculating the 
excitations of a pile of coupled 
springs.  Very hard in general. 

K. McFarland, INSS 2013



Summary for Neutrino Interactions
• Total cross section proportional to neutrino energy
• Angular dependence because of n helicity and conservation of spin

– Consequence:  Neutrinos have higher cross section than anti-neutrinos

• n-e scattering is the ONLY perfectly known cross section
– Everything else is more complicated:  NEED BETTER THEORY PREDICTIONS!

• The higher the n energy, the more final state particles produced
– Need to understand how n energy shows up in detector, AND backgrounds
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