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Correlations
Basic issue:
For 1 parameter, quote value and uncertainty
For 2 (or more) parameters, 

(e.g. gradient and intercept of straight line fit) 
quote values + uncertainties  + correlations

Just as the concept of variance for single variable is more 
general than Gaussian distribution, so correlation in 
more variables does not require multi-dim Gaussian

But more simple to introduce concept this way
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Learning to love the Covariance 
Matrix

• Introduction via 2-D Gaussian
• Understanding covariance
• Using the covariance matrix

Combining correlated measurements
• Estimating the covariance matrix
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Reminder of 
1-D Gaussian 
or Normal

y  =    1    exp{-(x-µ)2/(2s2)}
Ö2p s

Significance of σ

i) RMS of Gaussian = σ
(hence factor of 2 in definition of Gaussian)
ii) At x = µ±σ, y = ymax/√e  ~0.606 ymax
(i.e. σ = half-width at ‘half’-height)
iii) Fractional area within µ±σ = 68%  
iv) Height at max = 1/(σ√2π)
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Element Eij - <(xi – xi) (xj – xj)>

Diagonal Eij = variances

Off-diagonal Eij = covariances
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Towards the 
Covariance Matrix

x and y uncorrelated
P(x,y} = G1(x) G2(y)
G1(x) = 1/(√2πσx) exp{-x2/2σx

2}
G1(x) = 1/(√2πσy) exp{-y2/2σy

2}

P(x,y) = 1/(2πσxσy) exp{-0.5(x2/σx
2+y2/σy

2)}
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Inverse Covariance
Matrix

Covariance Matrix
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Inverse                     Covariance
covariance                matrix   
matrix

8x2 + 2y2 =1
0.5(13x’2 + 6√3x’y’ + 7y’2) =1 13/2 3√3/2         (1/32)*    7     -3√3/2

3√3/2      7/2                       -3√3/2     13( () ) 

7/32 = (0.468)2 = σ(x`)2

1/6.5 = (0.392)2

1/8 = eigenvalue of covariance matrix = σ(x)2

Correlation coefficient ρ
= covariance/σ(x’)σ(y’)  
=  (-3√3/2)/sqrt(7*13)
= -0.27
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Covariance matrix,
ρ in range -1à+1
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Using the Covariance  Matrix 

σy
2 = DED ͂

(i) Function of variables
y = y(xa, xb)

Given covariance matrix for xa, xb, what is σy ?

Differentiate, square, average
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(ii) Change of variables xa = xa(pi,pj)
xb = xb(pi,pj)

e.g Cartesian to polars;   or
Points in x.y à intercept and gradient of line

Given cov matrix for pi,pj, what is cov matrix for xa,xb ? 
Differentiate, calculate δxaδxb, and average
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Ex = TEpT

BEWARE!

 ͂
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Example from 
Particle Physics
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Examples of correlated variables
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Using the Covariance Matrix



Best Linear Unbiassed Estimate
Combine several possibly correlated estimates of same quantity
e.g. v1, v2, v3

Covariance matrix σ12 cov12 cov13
cov12 σ22 cov23
cov13 cov23 σ32

Uncorrelated              Positive correlation           Negative correlation

covij = ρij σi σj with   -1 ≤ ρ ≤ 1
Lyons, Gibault + Clifford
NIM A270 (1988) 42



Best Linear Unbiassed Estimate
Combine several possibly correlated estimates of same quantity
e.g. v1, v2, v3

Covariance matrix σ12 cov12 cov13
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Lyons, Gibault + Clifford
NIM A270 (1988) 42



vbest = w1v1 +  w2v2 +  w3v3 Linear
with    w1 +  w2 +  w3 =1           Unbiassed
to give σbest = min (wrt w1, w2, w3)      Best
For uncorrelated case, wi ~ 1/σi

2

For correlated pair of measurements with σ1 < σ2

vbest =  α v1 + β v2                β = 1 - α

β = 0 for ρ = σ1/σ2          (Smaller bà weights both >0)

β < 0 for ρ > σ1/σ2     i.e. extrapolation!     e.g. vbest = 2v1 – v2

V à

Vtrue v1 v2

Extrapolation is sensible:
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Beware extrapolations because

[b] σbest tends to zero, for ρ = +1 or -1

[a] vbest sensitive to ρ and σ1/σ2

N.B. For different analyses of ~ same data, 
ρ ~ 1, so choose ‘better’ analysis, rather than 
combining 



N.B. σbest depends on σ1, σ2 and ρ, but not on v1 – v2

e.g. Combining  0±3 and x±3  gives x/2 ± 2

BLUE = χ2

S(vbest) = Σ (vi – vbest) E-1
ij (vj – vbest) , and minimise S wrt vbest

Smin distributed like χ2, so measures Goodness of Fit
But BLUE gives weights for each vi

Can be used to see contribuEons to σbest from each source 
of uncertainEes e.g. staEsEcal and systemaEcs

different systemaEcs 

Extended by Valassi to combining more than one measured 
quanEty e.g. intercepts and gradients of a straight  line
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Small uncertainty

Example: Straight line fitting
xbest outside x1 à x2
ybest outside y1 à y2

MORE COMBINING:
Several pairs of correlated params
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Uncertainty on Ωdark energy
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When combining pairs of 
variables, the uncertainties on the 
combined parameters can be 
much smaller than any of the
individual uncertainties  
e.g. Ωdark energy
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Estimating the Covariance Matrix
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Conclusion

Covariance matrix formalism 
makes life easy when 
correlations are relevant


