Practical Statistics for Physicists

Louis Lyons Oxford &Imperial College CMS expt at LHC I.lyons@physics.ox.ac.uk

TRISEP June 2021

Correlations

Basic issue:

For 1 parameter, quote value and uncertainty For 2 (or more) parameters,

(e.g. gradient and intercept of straight line fit) quote values + uncertainties + correlations

Just as the concept of variance for single variable is more general than Gaussian distribution, so correlation in more variables does not require multi-dim Gaussian But more simple to introduce concept this way

Learning to love the Covariance Matrix

- Introduction via 2-D Gaussian
- Understanding covariance
- Using the covariance matrix
 Combining correlated measurements
- Estimating the covariance matrix

Reminder of 1-D Gaussian or Normal

14

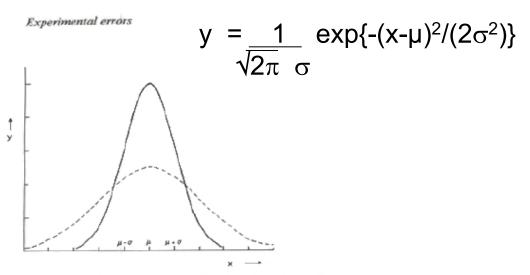


Fig. 1.5. The solid curve is the Gaussian distribution of eqn (1.14). The distribution peaks at the mean μ , and its width is characterised by the parameter σ . The dashed curve is another Gaussian distribution with the same values of μ , but with σ twice as large as the solid curve. Because the normalisation condition (1.15) ensures that the area under the curves is the same, the height of the dashed curve is only half that of the solid curve. The solid curve.

Significance of σ

i) RMS of Gaussian = σ (hence factor of 2 in definition of Gaussian) ii) At x = $\mu \pm \sigma$, y = $y_{max}/\sqrt{e} \sim 0.606 y_{max}$ (i.e. σ = half-width at 'half'-height) iii) Fractional area within $\mu \pm \sigma = 68\%$ iv) Height at max = $1/(\sigma\sqrt{2\pi})$

Gaussian in 2-variables

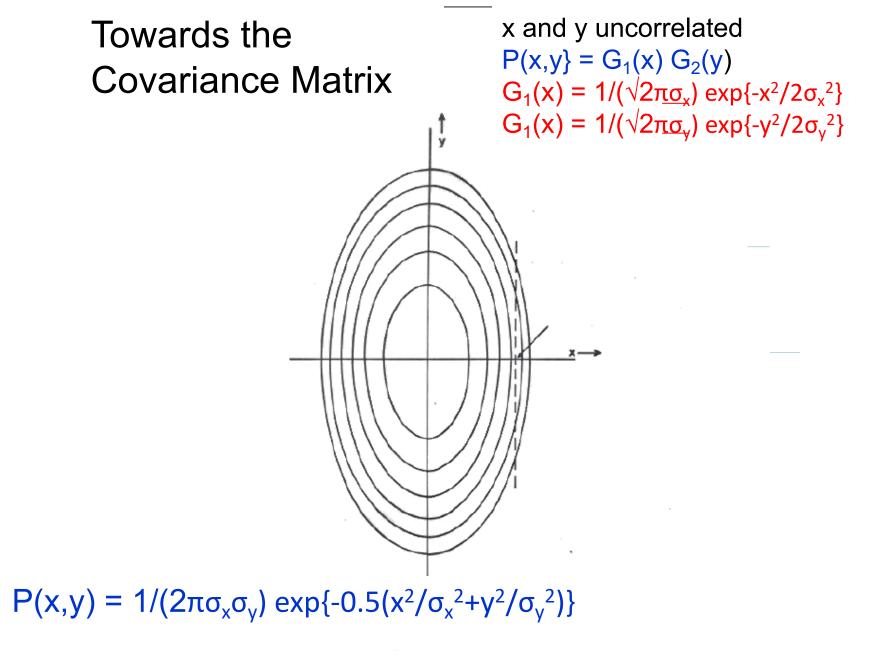
$$P(x) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma_x} e^{-\frac{1}{2}\frac{x^2}{\sigma_y^2}}$$

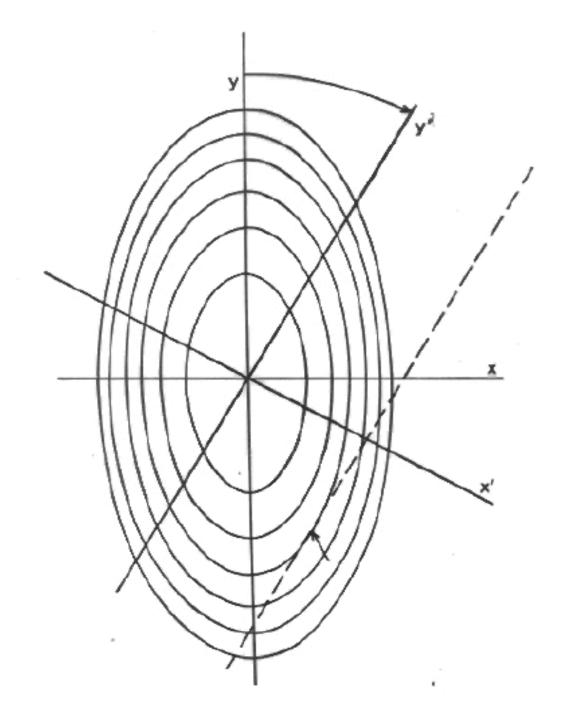
$$P(y) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma_y} e^{-\frac{1}{2}\frac{x^2}{\sigma_y^2}}$$

$$Y + y \quad \text{measurelated} \qquad \Rightarrow \frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right)$$

$$P(x,y) = \frac{1}{2\pi} \frac{1}{\sigma_x^2} \frac{1}{\sigma_y^2} e^{-\frac{1}{2}} \frac{1}{\sigma_x^2} \frac{1}{\sigma_y^2}$$

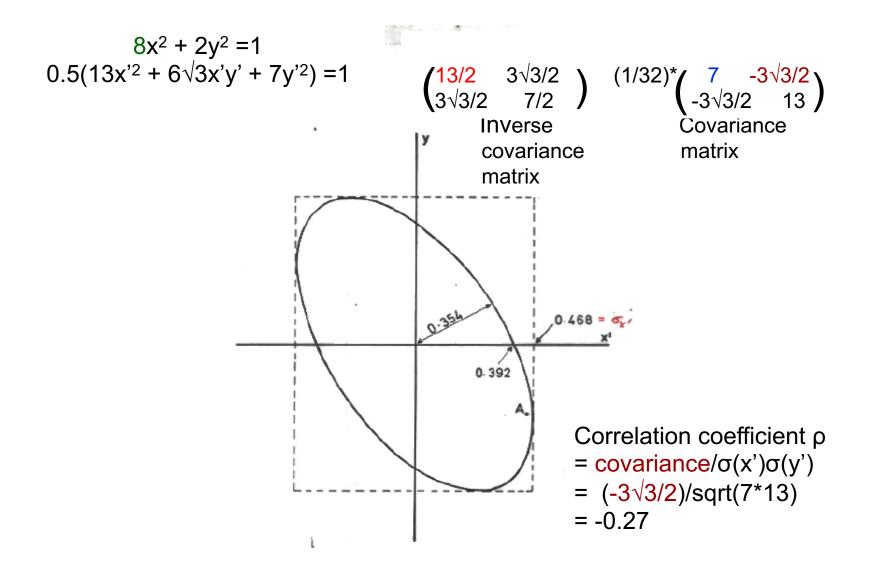
$$P(x,y) = \frac{1}{2\pi} \frac{1}{\sigma_x^2} \frac{1}{\sigma_y^2} e^{-\frac{1}{2}} \frac{1}{\sigma_x^2} \frac{1}{\sigma_y^2} \frac{1}{\sigma$$



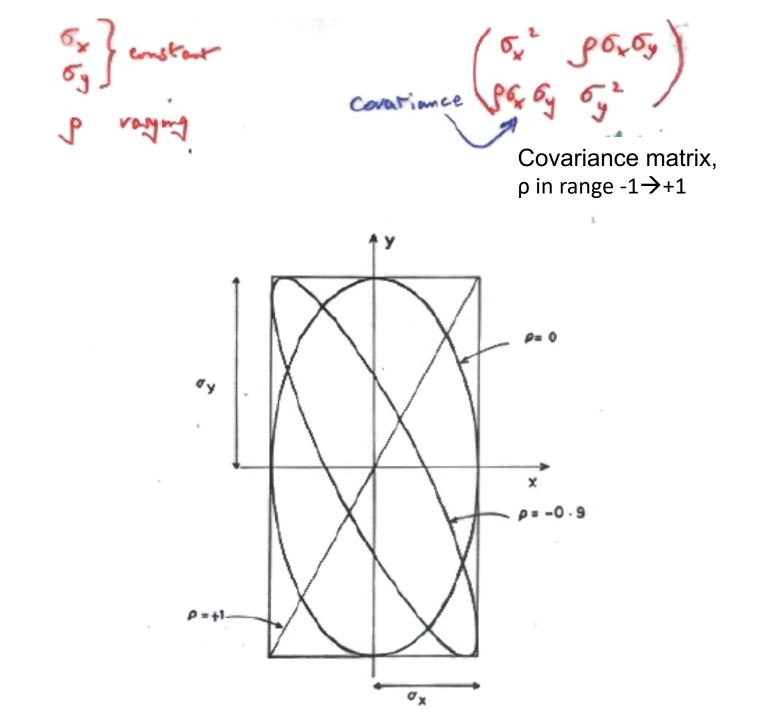


Specific example

$$G_{x} = \frac{\sqrt{2}}{4} = .354$$
 $G_{y} = \frac{\sqrt{2}}{2} = .707$
New for $g = -\frac{1}{2}$ show
 $8x^{2} + 2y^{2} = 1$
Now introduce CORRELATIONS by 30° Note
 $\frac{1}{2}\sqrt{13x'^{2}} + 6\sqrt{3}x'y' + 7y'^{2} - 1$
 $\begin{pmatrix} \frac{12}{2} & 3\frac{\sqrt{2}}{2} \\ 3\sqrt{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$
Inverse Covariance
Matrix
 $\frac{1}{32} \times \begin{pmatrix} 7 - 3\sqrt{3} \\ -3\sqrt{3} & 13 \end{pmatrix}$
Covariance Matrix



 $7/32 = (0.468)^2 = \sigma(x^{,})^2$ $1/6.5 = (0.392)^2$ $1/8 = eigenvalue of covariance matrix = <math>\sigma(x)^2$

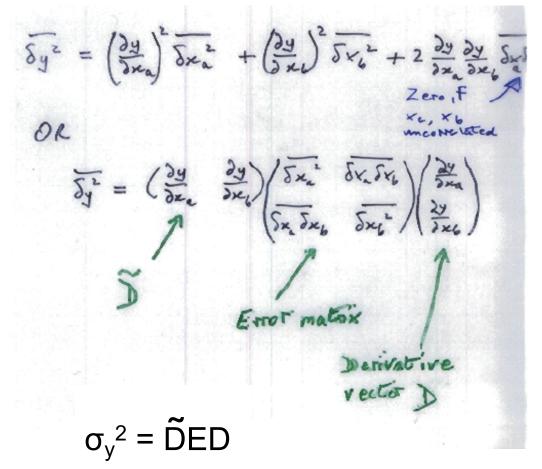


Using the Covariance Matrix

A second figure of a second second

(i) Function of variables $y = y(x_a, x_b)$ Given covariance matrix for x_a, x_b , what is σ_y ?

Differentiate, square, average



(ii) Change of variables $x_a = x_a(p_i, p_j)$ $x_b = x_b(p_i, p_j)$ e.g Cartesian to polars; or Points in x.y \rightarrow intercept and gradient of line

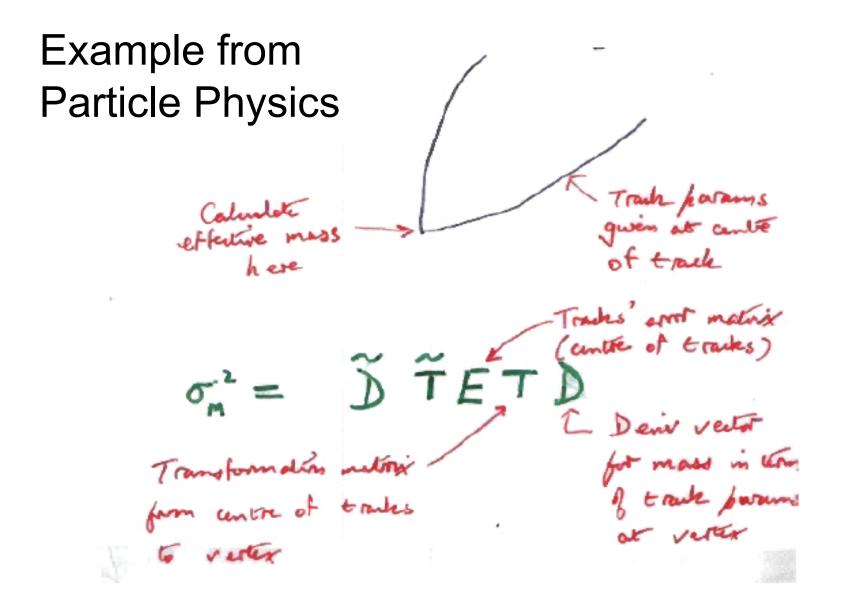
Given cov matrix for p_i, p_j , what is cov matrix for x_a, x_b ? Differentiate, calculate $\delta x_a \delta x_b$, and average

$$\begin{split} & \overline{\delta x_{\alpha}} = \frac{\partial x_{\alpha}}{\partial p_{i}} \quad \overline{\delta p_{i}} + \frac{\partial x_{\alpha}}{\partial p_{j}} \quad \overline{\delta p_{j}} \quad (+ \sin ft^{r} x_{6}) \\ & \overline{\delta x_{\alpha}} = \left(\frac{\partial x_{\alpha}}{\partial p_{i}}\right)^{2} \overline{\delta p_{i}}^{2} + \left(\frac{\partial x_{\alpha}}{\partial p_{j}}\right)^{2} \overline{\delta p_{i}}^{2} + 2 \frac{\partial x_{\alpha}}{\partial p_{i}} \quad \frac{\partial x_{\alpha}}{\partial p_{j}} \quad \overline{\delta p_{i}} \quad \overline{\delta$$

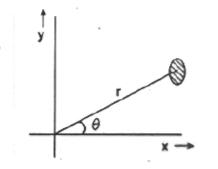
 $\left(\begin{array}{c} \overline{\delta x_{a}} & \overline{\delta x_{b}} \\ \overline{\delta x_{a}} & \overline{\delta x_{b}} \end{array} \right) = \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{a}} & \overline{\delta x_{b}} \end{array} \right) = \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \\ \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right) \right) \left(\begin{array}{c} \overline{\delta x_{b}} & \overline{\delta x_{b}} \end{array} \right)$ 1 error 1 Did error Tronsform

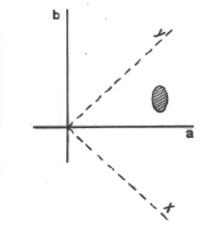
 $E_x = TE_pT$

BEWARE!



Examples of correlated variables





Using the Covariance Matrix COMBINING RESULTS If a; = 5; are independent: Minimise $S = \sum (a_i - \hat{a})^*$ $\Rightarrow \hat{a} = \frac{\sum a_i v_i}{\sum v_i} \quad v_i = \frac{1}{6}$ Now e: = 5; are correlated with error mating E $E = \begin{pmatrix} \sigma_{1}^{*} & \omega v(1,2) & \omega v(1,3) & \cdots \\ (\omega v(1,3) & \sigma_{1}^{*} & \omega v(2,3) & \cdots \end{pmatrix}$ $S = \sum_{i,j} (a_i - \hat{a}) = \sum_{i,j} (a_j - \hat{a})$ $1 = \sum_{i,j} (a_i - \hat{a}) = \sum_{i,j} (a_i - \hat{a})$ $1 = \sum_{i,j} (a_i - \hat{a}) = \sum_{i,j} (a_i - \hat{a})$ N.B. & CAN LIG OUTSIDE A: JO AS POZI $E' = \begin{pmatrix} 1_0 & 0 & \cdots \\ 0 & 1_0 & 0 \end{pmatrix}$ FOR UNCORRENATED

BLUE

Best Linear Unbiassed Estimate

Combine several possibly correlated estimates of same quantity e.g. V₁, V₂, V₃ σ_1^2 COV₁₂ **Covariance** matrix COV_{13} $\begin{array}{ccc} cov_{12} & \sigma_2^2 & cov_{23} \\ cov_{13} & cov_{23} & \sigma_3^2 \end{array}$ Negative correlation Uncorrelated Positive correlation $cov_{ij} = \rho_{ij} \sigma_i \sigma_j$ with $-1 \le \rho \le 1$ Lyons, Gibault + Clifford NIM A270 (1988) 42

BLUE

Best Linear Unbiassed Estimate

Combine several possibly correlated estimates of same quantity e.g. V₁, V₂, V₃ σ_1^2 COV₁₂ **Covariance** matrix COV_{13} $\begin{array}{ccc} \text{COV}_{12} & {\sigma_2}^2 & \text{COV}_{23} \\ \text{COV}_{13} & \text{COV}_{23} & {\sigma_3}^2 \end{array}$ Negative correlation Uncorrelated Positive correlation $cov_{ij} = \rho_{ij} \sigma_i \sigma_j$ with $-1 \le \rho \le 1$ Lyons, Gibault + Clifford NIM A270 (1988) 42

Linear $v_{\text{best}} = w_1 v_1 + w_2 v_2 + w_3 v_3$ with $w_1 + w_2 + w_3 = 1$ **U**nbiassed to give $\sigma_{\text{best}} = \min(\text{wrt } w_1, w_2, w_3)$ Best For uncorrelated case, $w_i \sim 1/\sigma_i^2$ For correlated pair of measurements with $\sigma_1 < \sigma_2$ $v_{best} = \alpha v_1 + \beta v_2$ $\beta = 1 - \alpha$ $\beta = 0$ for $\rho = \sigma_1 / \sigma_2$ (Smaller $\beta \rightarrow$ weights both >0) $\beta < 0$ for $\rho > \sigma_1/\sigma_2$ i.e. extrapolation! e.g. $v_{\text{best}} = 2v_1 - v_2$

Extrapolation is sensible:

 \lor

\bigwedge	\uparrow	\uparrow	
V _{true}	V ₁	V_2	

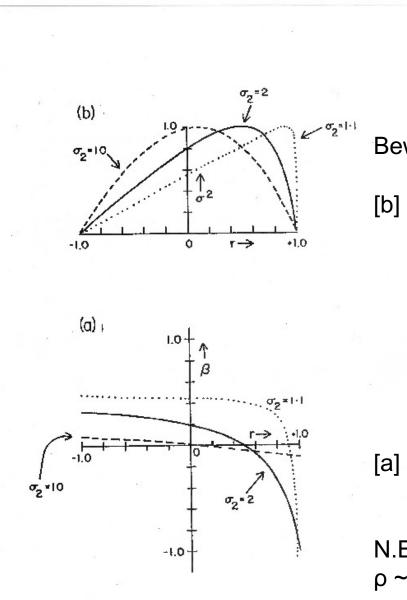


Fig. 1

Beware extrapolations because

[b] σ_{best} tends to zero, for ρ = +1 or -1

[a] v_{best} sensitive to ρ and σ_1/σ_2

N.B. For different analyses of ~ same data, $\rho \sim 1$, so choose 'better' analysis, rather than combining

N.B. σ_{best} depends on σ_1 , σ_2 and ρ , but not on $v_1 - v_2$ e.g. Combining 0±3 and x±3 gives x/2 ± 2

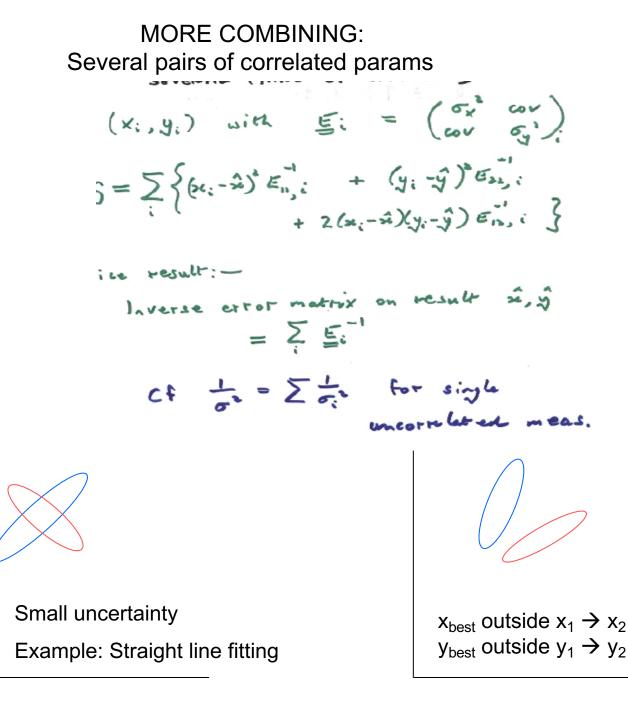
BLUE = χ^2

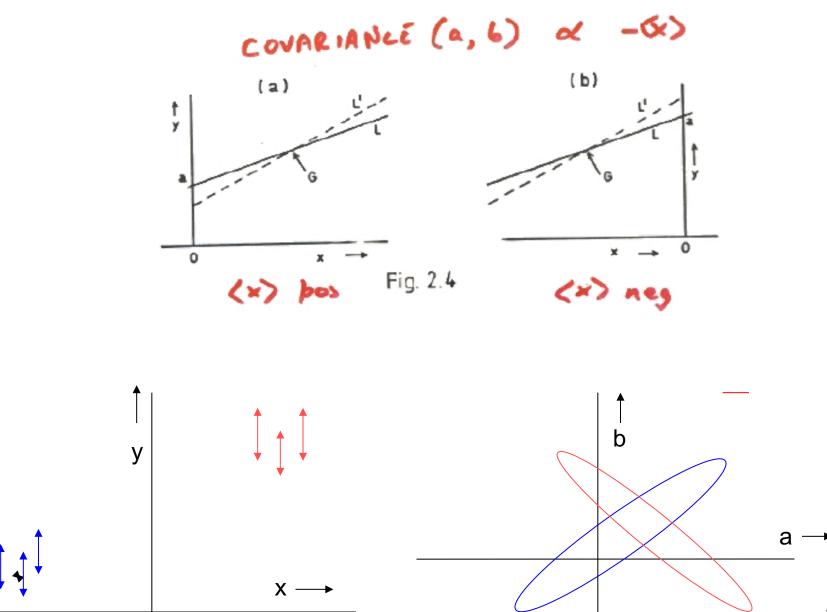
 $S(v_{best}) = \Sigma (v_i - v_{best}) E^{-1}_{ij} (v_j - v_{best})$, and minimise S wrt v_{best} S_{min} distributed like χ^2 , so measures Goodness of Fit But BLUE gives weights for each v_i

Can be used to see contributions to σ_{best} from each source of uncertainties e.g. statistical and systematics

different systematics

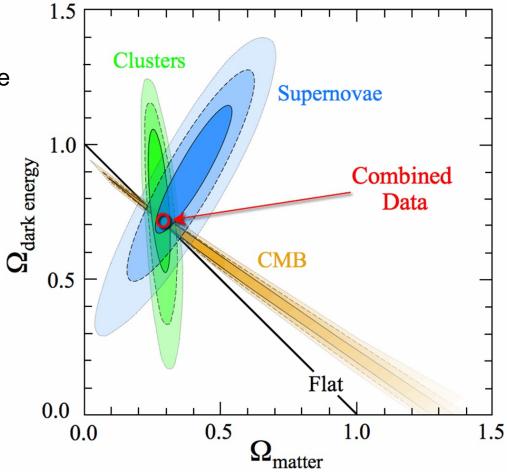
Extended by Valassi to combining more than one measured quantity e.g. intercepts and gradients of a straight line



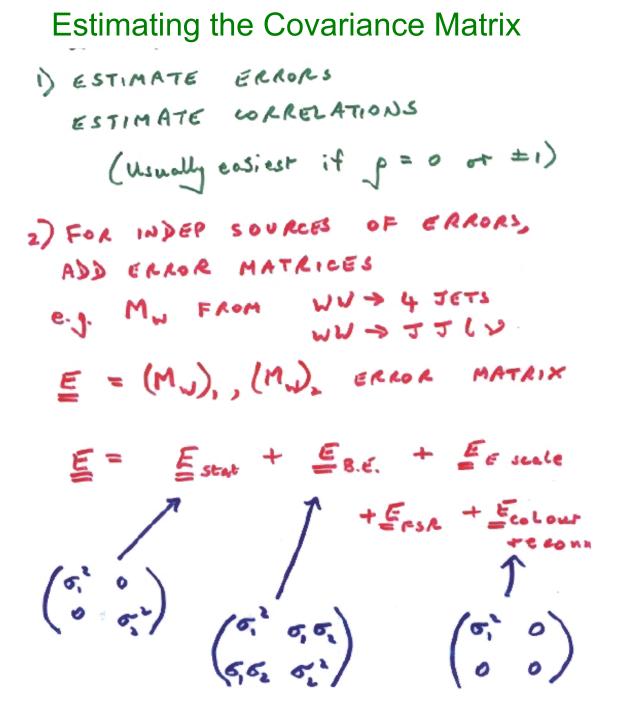


Uncertainty on $\Omega_{dark energy}$

When combining pairs of variables, the uncertainties on the combined parameters can be much smaller than any of the individual uncertainties e.g. $\Omega_{dark energy}$



CORRELATIONS + MASS RESOLUTION $M^{2} = (E_{i} + E_{2})^{2} - (p_{i} + p_{2})^{2}$ $M^{2} = (E_{i} + E_{2})^{2} - (p_{i} + p_{2})^{2}$ $P_{i} = (p_{i} + E_{2})^{2} - (p_{i} + p_{2})^{2}$ $P_{i} = (p_{i} + E_{2})^{2} - (p_{i} + p_{2})^{2}$ $P_{i} = (p_{i} + E_{2})^{2} - (p_{i} + p_{2})^{2}$ $P_{i} = (p_{i} + E_{2})^{2} - (p_{i} + p_{2})^{2}$ $P_{i} = (p_{i} + E_{2})^{2} - (p_{i} + p_{2})^{2}$ $P_{i} = (p_{i} + E_{2})^{2} - (p_{i} + p_{2})^{2}$ $P_{i} = (p_{i} + p_{2})^{2} - (p_{i} + p_{2})^{2}$ $P_{i} = (p_{i} + p_{2})^{2} - (p_{i} + p_{2})^{2}$ $P_{i} = (p_{i} + p_{2})^{2} - (p_{i} + p_{2})^{2}$ $P_{i} = (p_{i} + p_{2})^{2} - (p_{i} + p_{2})^{2}$ $P_{i} = (p_{i} + p_{2})^{2} - (p_{i} + p_{2})^{2}$ $P_{i} = (p_{i} + p_{2})^{2} - (p_{i} + p_{2})^{2}$ $P_{i} = (p_{i} + p_{2})^{2} - (p_{i} + p_{2})^{2}$ $P_{i} = (p_{i} + p_{2})^{2} - (p_{i} + p_{2})^{2}$ $P_{i} = (p_{i} + p_{2})^{2} - (p_{i} + p_{2})^{2}$ $P_{i} = (p_{i} + p_{2})^{2} - (p_{i} + p_{2})^{2}$ $P_{i} = (p_{i} + p_{2})^{2} - (p_{i} + p_{2})^{2}$ mie. Mt as jit + 8; t As bit, OT Smaller on As fit, 8t : Larger om



Conclusion

Covariance matrix formalism makes life easy when correlations are relevant