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Background and Context
• Dark Matter interactions

o Kinematics and other considerations
o Expected DM signal spectra
o DM signatures

• Background
o Expected Signal Rates
o Background sources and mitigation 

strategies
• Analysis

o Assumptions
o Extracting limits or confidence regions

• Detection Mechanisms
o Electronic excitations and nuclear recoils
o Special effects at low energy

• Calibration
o Electron recoil energy scale
o Nuclear recoil energy scale
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Experiments
• The first Kids on the Block
• The Imag(e)inative Descendants
• The really cool ones
• The hot stuff
• The DAMA Drama
• The Xenon Frenzy
• Big, Bigger, Biggest
• The spherical Cow
• What else there is …

Results
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The first Kids on the Block
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Semiconductors: high purity, low threshold

Ge detectors, developed for 0𝜈𝜈𝜈𝜈𝜈𝜈 search
With NaI veto, low-activity housing/shield
Oroville Experiment (1988)
Later also Si detectors (for DM search)
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Since then: loads of Ge experiments with 
similar technique
Often tagged onto 0𝜈𝜈𝜈𝜈𝜈𝜈 experiments 

No Si as far as I know
However …

On average, ~3-4 eV/pair

𝒪𝒪(1 eV)

Few 100 pairs

1988

Int. J. Mod. Phys. D vol3, suppl. (1994) 43

––
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Imag(e)inative Descendants
Silicon CCDs
• Excellent position resolution (no timing though)
→ particle identification; background discrimination

• Improvements: ‘Skipper CCD’
measure same pixel often → single 𝑒𝑒− resolution

• Relatively small mass per detector (build many)
• Primary contribution for electron-interacting DM

(via Migdal, also very low-energy NR)

DAMIC (SNOLAB, Modane)
SENSEI (Fermilab, SNOLAB)
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arXiv: 2004.11378

NOTE:
Mass scale is in MeV/c2

(not GeV as usually for 
NR)
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The really cool ones
Cryogenic detectors, typically operated @𝒪𝒪(10s of mK)
• Complex technology; (relatively) expensive detector production
• Excellent energy resolution
• Material flexible
• Can operate heterogeneous experiment

(different materials, detector types)
• Semiconductors/scintillators: ER/NR discrimination
• Experiments

• CDMS/SuperCDMS: Ge/Si (Stanford, Soudan, SNOLAB)
• EDELWEISS: Ge (Modane, France)
• CRESST: Al2O3 (sapphire), CaWO4 (Gran Sasso, Italy)
• Cosinus: NaI (Gran Sasso, Italy)
• Future: SPICE/HeRALD (polar crystals (e.g. GaAs), suprafluid He)



Dark Matter
direct detection

20
21

7

The really cool ones – SuperCDMS

Phonon Readout:
Tungsten TES

R vs T
Add: charge readout (few V)
Background discrimination
Threshold < 1 keV

Add: high voltage 100 V)
Phonons from drifting charges
Threshold < 10 eVee (phonon)

+ 0
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Nuclear recoils:
signal

Electron recoils:
background

< 1 background event for
whole exposure

effective threshold: one
(or few) electron-hole pairs
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The really cool ones – SuperCDMS

Phonon Readout:
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Add: charge readout (few V)
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Threshold < 1 keV
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Nuclear recoils:
signal

Electron recoils:
background

< 1 background event for
whole exposure

effective threshold: one
(or few) electron-hole pairs

Neganov-Luke Effect

+-

-

In Vacuum

-

+- In Matter

Electron gains kinetic energy
(E = q · V → 1 eV for 1 V potential)

Deposited energy in crystal lattice:
Neganov-Luke phonons

∝ V, # charges

• Luke phonons mix charge and phonon signal → reduced discrimination
• Apply high voltage → large final phonon signal, measures charge!!
• ER much more amplified than NR

→ gain in threshold; dilute background from ER
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Fridge to provide 
<15 mK at the detector

Mounted on spring-loaded 
platform (seismic isolation)

Signal vacuum 
feedthroughs

Initial Payload:
2 HV towers (4 Ge/2Si)
1 Ge iZIP tower
1 Ge/Si iZIP tower (4/2)

Implementation (SNOLAB setup)

Detector volume
(space for up to 7 “towers”)

Cold finger

6 detectors 
→ 1 tower

30 cm HDPE

20 cm Pb

60 cm HDPE base / water

Additional cooling
(70 K/4 K)

The really cool ones – SuperCDMS
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The really cool ones – SuperCDMS

Low mass R&D detector (~1 g, Si)

• Same sensor technology
• Some improvements on sensor 

layout
• Neganov-Luke effect (150 V)
• Much higher E-field than in big 

detectors
• Designed for neutron 

scattering experiment

/ ~11 g Si)

• Pure phonon detector (no bias 
voltage)

• Designed for photon detection 
at mK

• Baseline noise: 𝜎𝜎< 4 eV
• Threshold <15 eV
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The really cool ones – CUTE
Detector testing issues for SuperCDMS:
• Big detectors in unshielded lab: constant pile-up
• Cosmogenic radiation activates detectors
• Cannot check discrimination (ER/NR) due to BG
→ Need a well shielded

Cryogenic Underground TEst facility (CUTE)

• Operational since 2019
• Operated a variety of detectors (testing 

facility and detectors
• First full test for big SuperCDMS detectors 

imminent
• Plans for DM search before full 

SuperCDMS setup is ready
• Later available for other projects
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The hot stuff
Superheated Liquids
• Liquid is above boiling temperature, but needs 

nucleation to evaporate
• Energy deposit from particle interaction forms tiny 

gas bubble
• If pressure in bubble is larger than surface tension: 

evaporation → need high enough ionization density

Discrimination:
• Nuclear recoils deposit their energy within a few Å
• Gammas Compton scatter and excite / ionize many 

atoms but far apart
→ Can choose operating conditions where sensitive to NR but not ER:
→ No gamma background; no gamma shielding necessary!!
• Alphas still trigger bubble formation – However…

n, χ

nuclear recoil:
one proto bubble

alpha decay:
many proto bubbles

alphas produce stronger pressure wave
(aka: ‘louder’ bubbles)

Neutrons: determine rate through multiple 
interactions

Can use different targt
materials.
Present favourit: C3F8

F excellent for spin-
dependent DM 
interactions (100 % 19F)
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The hot stuff
Two types of experiments:
• Droplets suspended in gel (PICASSO, SIMPLE):

detect bursting bubbles by pressure waves;
re-compress after a few hours

• Classical bubble chamber (COUPP, PICO)
optical readout + acoustic/pressure
compress after few ms to stop evaporation

Multi-bubble event in COUPP (neutron)

PICO generations: 2L/60/40L/500
“Old” design: problem with debris

“New” design (40L/500): Right side up

Spin-off: Scintillating bubble chamber 
(“SBC”: liquid Ar/Xe; Fermilab/SNOLAB)
Scintillation suppresses bubbles: lower 
threshold without gamma background

PICO/PICASSO: SNOLAB
COUPP: Fermilab
SIMPLE: LSBB (France)

SBC @ Fermilab
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NaI scintillator, Gran Sasso
• Ultra low background NaI crystals (9.7 kg)
• Each crystal is watched by 2 PMTs
• Data: 7 years (1995-2002), 100 kg (DAMA) 

+ 6  years (2003-2009), 250 kg (LIBRA) , 1.13 t y
(as of 2018)

• Searching for annual modulation signal → found
• Interpretation controversial

arXiv: 1805.10486 14
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NaI, Yangyang Underground Lab (Y2L), Korea
• ~100 kg NaI with liquid scintillator veto
• Specifically built to test DAMA claim
• Challenging to get background low
• Rate based analysis in tension with DAMA
• First modulation analysis

• Consistent with DAMA/LIBRA – and with 0 …

The DAMA Drama – COSINE

Nature 564 (2018) 83 & PRL 123 (2019) 031302 15
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NaI, Canfranc Lab (LSC), Spain
• ~112 kg NaI, muon veto, passive shielding
• Specifically built to test DAMA claim
• Challenging to get background low
• Modulation analysis

~ DAMA/LIBRA rate
arXiv: 2103.01175

The End ?
16

More NaI experiments:

NaIAD (UK)
DM-ICE (South Pole)
SABRE (Italy/Australia)
COSINUS (Italy, cryo)

Multiple scatters
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The Xenon Frenzy
Xenon: excellent scintillator, strong self-shielding
• Pure scintillators:

DAMA/Xe (Italy), ZEPLIN I (UK), XMASS (Japan)
• Since ~2005: dual phase experiments

ZEPLIN (UK), XENON (Italy), LUX/LZ (US), 
PandaX (China)

• Ionization/scintillation discriminates ER/NR
(not perfect, but ER rate overall low)

XENON
PandaX , DARWIN (Italy?)

LZ
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The Xenon Frenzy
Example XENON

XENON1t TPC

XENON @ LNGS

Water tank = muon veto

Processing systems

XENONnt TPC (~6t)

XENON1t: excess at 
low energy – Axions? 
(or 3H?)
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Big, Bigger, Biggest
Argon: excellent scintillator
• Strong pulse shape difference b/w ER and NR

(𝒪𝒪(10-9) ER rejection at 50 % NR efficiency
• Ionization/scintillation also discriminates ER vs. NR
• Problem: large contamination from 39Ar (~1 Bq/kg)
• Solution: Ar from underground  >1e3× less 39Ar

(in addition to discrimination)
• Many experiments: 

Electron recoil
(tail/peak large)

Nuclear recoil
(tail/peak small)

• Single phase: DEAP3600, MiniClean
• Dual phase: WARP, ArDM, DarkSide

TPC allows for very effective surface event 
rejection
DarkSide uses underground Ar

• Single phase: DEAP3600, MiniClean
• Dual phase: WARP, ArDM, DarkSide

Dual phase technology 
used on very large scale 
for neutrino oscillation 
experiments 
(ICARUS, DUNE)
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Big, Bigger, Biggest
DEAP: 3.3 t single phase Ar at SNOLAB, water veto
• Start of operations: 2016
• ~2 ton-years of data published

• Analysis: non-blind; no background 
found (but a few events very close)

• More data being analyzed
• Repair in progress

(fix problem with ‘neck’, so can 
fill detector to the top)
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Big, Bigger, Biggest
Future of the LAr program
• Expansion of underground Ar (UAr) production
• Attempt distillation for further isotopic enrichment
• Global LAr collaboration (DEAP, DarkSide, ArDM, CLEAN):

• DarkSide-20k (20 t UAr) at Gran Sasso (Italy), under construction
• Possibly DarkSide-LM (optimized 

for low mass search)
• ARGO: 500 ton UAr

at SNOLAB (proposed)
single or dual phase (TBD)
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The Spherical Cow
Spherical gas detector at SNOLAB: NEWS-G
• Strong field in the centre: gas amplification (“avalanche”) 
• Low-activity Cu sphere with low-activity Pb and PE shielding
• Can use different gases (CH4, Ne, Ar)
• Simple readout, low threshold
• Pulse shape rejects long traces, surface events
• First data from operations at Modane
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What else there is …
Examples for Directional Detection
• DRIFT: gas TPC (Boulby Mine, UK)

139 g/m3 of CS2/CF4/O2 (30:10:1)
No ER sensitivity (ionization density)

• NEWS-dm: emulsion (R&D stage)
Excellent position information but
high threshold (10s of keV);
no real-time information: keep 
orientation constant wrt galaxy

• General problem
High-mass DM: need very large mass
(presently not feasible)
Low-mass DM: tracks for low-energy 
interactions too short

• New ideas exist (e.g. use un-isotropy 
of crystals for direction-dependent 
threshold for very low-energy 
interactions).

DRIFT

DRIFT

NEWS-dm
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What else there is …
Example for Inelastic Dark Matter
• DM particles with excited state
• Scattering process differs from elastic 

scattering
• Limits on mass-splitting as function 

of DM mass
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What else there is …
Example for ‘crazy’ ideas
(however: real, not bogus)
Note: outside the mass range I 
promised to cover…
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Experiments
• The first Kids on the Block
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• Big, Bigger, Biggest
• The spherical Cow
• What else there is …
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Results – Low energy excess
Several low-threshold experiments found an unexpected excess well below 1 keV:
• CRESST
• EDELWEISS
• SuperCDMS (PD2/CPD) and HVeV
• DAMIC
• SENSEI
Could this be DM?
• Rate and energy scale differs
• Some suggestions for BG sources

(fluorescence of non-conducting
materials near the detector)

• Investigations underway
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Results – DM limits (NR)

Neutrino 
Background

CRESST III

NEWS-G

Xe/Ar
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Results – DM limits (NR)

Spin dependent

PICO
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Results – Electron-interacting DM

Form factor for a light mediator
(different limits apply for heavy mediators)
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Results – Electron-interacting DM

XMASS

EDELWEISS

XENON 100 
(An et al)

XENON 1T

XENON 100 
(Hochberg et al)

XENON 10 
(An et al)

SuperCDMS
HVeV

SENSEIDAMIC

CRESST II
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Conclusions

• Direct detection experiments improved their sensitivity by over 15 orders of magnitude 
since the start

• “Vanilla WIMP” search has reached (if not surpassed) prime time
• Experiments and analyses are branching out to alternative DM Models:

o Lower masses (non-thermal production, dark sector …)
o Alternative interaction mechanisms (“EFT”)
o Electron-interacting DM (scattering and absorption)

• Within the next 10-15 years: reach neutrino floor from a fraction of one to thousands of 
GeV/c2; probably cover most of the mass range where particle-like DM can be found

• If DM is particle like, we have a good chance to find it soonish …
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