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Part 1: the standard cosmological model



All current data can be fit by a 6-parameter cosmological model! 

rL = (2.56 ± 0.04) x 10-47 GeV4 
Wb = 0.0486 ± 0.0007  
Wc= 0.267 ± 0.009 
Dz2 = (2.11 ± 0.05) x 10-9 
ns = 0.967 ± 0.004 
t = 0.058 ± 0.012

Dark energy density (c.c.)
Baryonic(*) matter abundance

Initial power spectrum amplitude
Spectral index
CMB optical depth

(*) “Baryons” = protons + neutrons + electrons(!)

Cold dark matter abundance
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dark  
matter 
27%

baryonic matter 5%



• Background metric is FRW 
• Expansion history is LCDM 
• Initial perturbations are Gaussian random 
• Initial perturbations are scalar adiabatic 
• Power spectrum of initial perturbations is a 

power law: (k3/2⇡2)P (k) = �2
⇣(k/k0)

ns�1

Ingredients in the standard cosmological model:

In the next few slides, we’ll describe these ingredients at an 
informal level, just to set the stage.  (Focus of these lectures is 
data analysis and statistics, theory lectures are next week!)



“Background metric is FRW”

The expansion of the universe is described by a function a(t), 
such that a=0 at the big bang, and a=1 today.  (a = “scale factor”)

Intuitive meaning: if points x, x’ are separated by distance D 
today, then their separation at time t is a(t)D.

Formal meaning: metric is ds2 = -dt2 + a(t)2 dx2



“Expansion history is LCDM”
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Energy densities evolve with scale factor a(t):
⇢de =

⇢m / a(t)�3

⇢rad / a(t)�4

constant
nonrelativistic matter (dark + baryonic)
dark energy (assuming it is a c.c.!)

relativistic particles (photons, neutrinos)
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Scale factor a(t) evolves via Friedmann equation
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“Expansion history is LCDM”



rL = (2.56 ± 0.04) x 10-47 GeV4 
Wb = 0.0486 ± 0.0007  
Wc= 0.267 ± 0.009 
Dz2 = (2.11 ± 0.05) x 10-9 
ns = 0.967 ± 0.004 
t = 0.058 ± 0.012

Dark energy density (c.c.)
Baryonic matter abundance

Initial power spectrum amplitude
Spectral index
CMB optical depth

Cold dark matter abundance

The expansion history is parameterized by the first three parameters 
in the standard model (rL, Wb, Wc). 

So far, we have not talked about perturbations.  The next two 
parameters (Dz2, ns) specify the initial perturbations.



Initial conditions: at early times, the FRW metric has small 
perturbations.

ds

2 = �dt

2 + a(t)2e2⇣(x)dx2

The field z(x) is called the “adiabatic curvature” or the “initial 
curvature”.  This is a random field whose statistics can be described 
informally by the following statements:

• Initial perturbations are self-
similar (no preferred scale) 

• Almost scale-invariant, small 
trend toward more power on 
large scales. 

• Characteristic size of 
fluctuations is Dz ~ (5 x 10-5)



Initial conditions: at early times, the FRW metric has small 
perturbations.

ds

2 = �dt

2 + a(t)2e2⇣(x)dx2

More formally, z(x) is a Gaussian random field with the following 
power spectrum Pz(k).  (This will be defined precisely later!)

k3

2⇡2
P⇣(k) = �2

⇣

✓
k

0.05 h Mpc�1

◆ns�1

with free parameters

Dz2 = (2.11 ± 0.05) x 10-9 
ns = 0.967 ± 0.004

Initial power spectrum amplitude
Spectral index



“Initial perturbations are scalar adiabatic”.

• “Scalar” means that there are no gravity wave perturbations 
in the initial metric.  (Some models of inflation predict this, 
but so far it has not been observed.)

• “Adiabatic” is more technical.  It means that the z field also 
completely determines the perturbations in the stress-energy 
tensor, by a universal set of rules which will be explained 
later!

⇢(x, t) = ⇢̄(t)
⇣
1 +

4

7
⇣(x)

⌘

· · ·

ds

2 = �dt

2 + a(t)2e2⇣(x)(�
ij

+ h

ij

(x))

absent



rL = (2.56 ± 0.04) x 10-47 GeV4 
Wb = 0.0486 ± 0.0007  
Wc= 0.267 ± 0.009 
Dz2 = (2.11 ± 0.05) x 10-9 
ns = 0.967 ± 0.004 
t = 0.058 ± 0.012

Dark energy density (c.c.)
Baryonic matter abundance

Initial power spectrum amplitude
Spectral index
CMB optical depth

Cold dark matter abundance

The statistics of the initial perturbations are parameterized by 
parameters (Dz2, ns) below.

The final parameter t is an astrophysical nuisance parameter which 
we define for completeness.



Ionization history of the universe

Time

xe(t) = electron ionization fraction 
        = probability that a random electron in the universe is ionized

z=1100:  
“recombination” 
(CMB is formed)

z=7:  
“reionization” 
(stars form)

“dark ages”

             (rather than being part of an atom)



Ionization history of the universe

Time

t = CMB optical depth 
   = probability that a CMB photon emitted at z~1100 scatters from

z=1100:  
“recombination” 
(CMB is formed)

z=7:  
“reionization” 
(stars form)

“dark ages”

             an electron at low redshift, before being observed at z=0.



Ionization history of the universe

t = CMB optical depth 
   = probability that a CMB photon emitted at z~1100 scatters from

             an electron at low redshift, before being observed at z=0.

Astrophysical nuisance parameter: t affects the CMB power 
spectrum.   

When fitting cosmological parameters from the CMB, we need to 
include t in the fit, and account for uncertainty in t when assigning 
errors to other parameters.



• Background metric is FRW 
• Expansion history is LCDM 
• Initial perturbations are Gaussian random 
• Initial perturbations are scalar adiabatic 
• Power spectrum of initial perturbations is a 

power law:

Six parameters: 

Standard model of cosmology:

(k3/2⇡2)P (k) = �2
⇣(k/k0)

ns�1

rL = (2.56 ± 0.04) x 10-47 GeV4 
Wb = 0.0486 ± 0.0007  
Wc= 0.267 ± 0.009 
Dz2 = (2.11 ± 0.05) x 10-9 
ns = 0.967 ± 0.004 
t = 0.058 ± 0.012

Dark energy density (c.c.)
Baryonic(*) matter abundance

Initial power spectrum amplitude
Spectral index
CMB optical depth

Cold dark matter abundance

(*) “Baryons” = protons + neutrons + electrons(!)



The standard cosmological model specifies the perturbations at very 
early times (high-z).  They are fairly simple, and parameterized by a 
Gaussian random field z(x) with a featureless power spectrum. 

⇣(x)

High-z



The standard cosmological model specifies the perturbations at very 
early times (high-z).  They are fairly simple, and parameterized by a 
Gaussian random field z(x) with a featureless power spectrum. 

As time evolves, the perturbations become more complex.  By the 
time the CMB is formed (z=1100), a lot of physics has been 
“imprinted” on the power spectrum.

⇣(x)

z=1100
High-z

CMB 



The standard cosmological model specifies the perturbations at very 
early times (high-z).  They are fairly simple, and parameterized by a 
Gaussian random field z(x) with a featureless power spectrum. 

As time evolves, the perturbations become more complex.  By the 
time the CMB is formed (z=1100), a lot of physics has been 
“imprinted” on the power spectrum. 

At late times (z~1), nonlinear effects are important and the 
perturbations are very non-Gaussian.

⇣(x)

z=1100
High-z

CMB 

z~1



⇣(x)

z=1100
High-z

CMB 

z~1

inflation? 
cyclic universe? 
something else?

The standard cosmological model specifies the perturbations at very 
early times (high-z).  They are fairly simple, and parameterized by a 
Gaussian random field z(x) with a featureless power spectrum. 

As time evolves, the perturbations become more complex.  By the 
time the CMB is formed (z=1100), a lot of physics has been 
“imprinted” on the power spectrum. 

At late times (z~1), nonlinear effects are important and the 
perturbations are very non-Gaussian. 

There are also models for the “early universe”, a hypothetical phase 
preceding the radiation-dominated part of the expansion, which try 
to explain where the Gaussian field  z came from.



⇣(x)

z=1100
High-z

CMB 

z~1

inflation? 
cyclic universe? 
something else?

In each of these three stages, different physics is important:

• Early universe: Quantum mechanics in expanding spacetime 
generates Gaussian perturbations from vacuum 

• Formation of the CMB: Linear perturbation theory in a 
plasma with multiple components (dark matter, baryons, 
photons, neutrinos) + metric degrees of freedom 

• Late times: Gravitational N-body physics.  Messy 
astrophysics!  (galaxy formation, star formation, …)



Fundamental 
physics

Data 
analysis

~1930:  Expanding universe 
  1965:  Big bang (discovery of CMB) 
~1970:  Dark matter 
  1992:  Gaussian, nearly scale-invariant perturbations (COBE)  
  1998:  Cosmological constant 
  2006:  Deviation from scale invariance (ns < 1) 

Challenge for observers: which model fits the data?

Cosmological constant rL 

Baryon abundance Wb 

Dark matter abundance Wc 

Initial amplitude Dz2 

Spectral index ns 

CMB optical depth t



Fundamental 
physics

Data 
analysis

Cosmological constant rL 

Baryon abundance Wb 

Dark matter abundance Wc 

Initial amplitude Dz2 

Spectral index ns 

CMB optical depth t



Challenge for theorists: explain this model at a fundamental level

• What is dark matter?
• Why is the cosmological constant so fine-tuned?

(if late-time accelerated expansion is indeed a c.c.!) 
• What physics is responsible for generating the initial

Gaussian, nearly scale invariant fluctuations? 

Fundamental 
physics

Data 
analysis

Cosmological constant rL 

Baryon abundance Wb 

Dark matter abundance Wc 

Initial amplitude Dz2 

Spectral index ns 

CMB optical depth t



Planck 2015

Cosmological observables (such as the CMB power spectrum) 
are sensitive to cosmological parameters, and can jointly constrain 
multiple parameters.



Cosmic microwave  
background (CMB) Gravitational lensing Type Ia supernovae

Variety of datasets, field is rapidly evolving:

Galaxy clustering 21-cm intensity mapping Galaxy cluster abundance



Cosmology is largely concerned with looking for extensions of 
the 6-parameter standard model.

• Non-Gaussian initial conditions 
• Non-minimal neutrino mass 
• Extra neutrino species or other light relics 
• Interacting dark matter 
• Nonzero spatial curvature 
• Cosmological gravity waves

+ many others!

The standard model includes ingredients which were originally 
surprises (dark matter, cosmological constant, quantum 
mechanically generated perturbations).   

Will we find new surprises?



Part 2: random variables and fields



The standard model of cosmology is a probabilistic model. 

For example, it can predict the probability of a given CMB 
realization occurring, but not the specific realization. 

In this part of the lectures, we’ll build up some machinery for 
working with random variables and fields.



Physicist’s definition of a one-dimensional random variable X: 
anything with a probability distribution function (PDF) p(x). 

The meaning of p(x) is “probability per unit x”. 

Here is an arbitrarily chosen example.

p(x) =
1

⇡

1p
1� x

2



p(x) =
1

⇡

1p
1� x

2

Histogram of 106 random samples in 30 bins, compared to the 
continuous PDF.  The probability for the random variable X to 
be in bin [a,b] is:

Note that the PDF must satisfy 
R1
�1 dx p(x) = 1

Prob

⇣
a < X < b

⌘
=

Z b

a
dx p(x)



The notation < . > denotes an expectation value over realizations 
of the random variable X.  For example:

p(x) =
1

⇡

1p
1� x

2

hXi =
Z 1

�1
dx x p(x) = 0

hX2i =
Z 1

�1
dx x

2
p(x) =

1

2



New random variables can be constructed from old ones. 

For example, define Y = (X1 + X2), where X1,X2 are independent 
random variables with the same PDF as before, p(x) = 1

⇡

p
1�x

2

X Y=X1+X2

)



X Y = X1 + X2 + X3

)

Three X’s added together: Y = X1 + X2 + X3



Four X’s added together: Y = X1 + X2 + X3 + X4

X

)

Y = X1 + X2 + X3 + X4



Five X’s added together: Y = X1 + X2 + X3 + X4 + X5

X

)

Y = X1 + X2 + X3 + X4 + X5



Twenty X’s added together:

X

)

p(x) =
1p
20⇡

e

�x

2
/20

p(x) =
1

⇡

1p
1� x

2

Y =
20X

i=1

Xi

In the next few slides, we’ll explain where the limiting PDF 
                                    comes from (including factors of 20, p).  p(x) = 1p

20⇡
e

�x

2
/20

Y =
P20

i=1 Xi



Central limit theorem: the sum of a large number of independent, 
identically distributed random variables has a PDF which is 
approximately Gaussian.  (Proof omitted!)

The Gaussian PDF is defined by: 

p(x) =

1p
2⇡�

2
exp

✓
� (x� x̄)

2

2�

2

◆

and has two parameters: a mean     and a width    . x̄

�

x̄

�



Some definitions: the mean and variance of a random variable X 
are defined by:

Var(X) = hX2i � hXi2

= h(X � X̄)2i

X̄ = hXi [ mean ]

[ variance ]

                  can be interpreted as the “typical” size of fluctuations 
around the mean. 

p
Var(X)



Example: For the Gaussian

a short calculation shows:

x̄

�

p(x) =

1p
2⇡�

2
exp

✓
� (x� x̄)

2

2�

2

◆

Mean =

Z 1

�1
dx p(x)x = x̄

Variance =

Z 1

�1
dx p(x) (x2 � x̄

2) = �

2



p(x) =
1

⇡

1p
1� x

2

Example 2: for the PDF                              considered previously,p(x) = 1
⇡

1p
1�x

2

X̄ = 0

Var(X) = h(X � X̄)2i = 1
2

Next let’s calculate mean and variance of                           , 
where the X’s are assumed to be independent samples.

Y =
PN

i=1 Xi



Properties of expectation values:

if c is a constant (not a random variable) 
if X, X’ are independent random variables
(not true in general!)

hX ±X 0i = hXi± hX 0i
hcXi = chXi

hXX 0i = hXi hX 0i



Properties of expectation values:

if c is a constant (not a random variable) 
if X, X’ are independent random variables
(not true in general!)

Now we can calculate mean and variance of Y =
PN

i=1 Xi

hX ±X 0i = hXi± hX 0i
hcXi = chXi

hXX 0i = hXi hX 0i

Ȳ =
PN

i=1 X̄i = 0

Var(Y ) = h(Y � Ȳ )2i
= h(

P
i Xi)2i

= h
P

i X
2
i +

P
i 6=j XiXji

=
P

ihX2
i i+

P
i 6=jhXiihXji

= N
�
1
2

�



Ȳ = 0 Var(Y ) = N/2

This calculation gives the  mean and variance of                          :Y =
PN

i=1 Xi

(for all N)

In general, the mean and variance do not determine the PDF p(x). 
However, for a Gaussian PDF they do!

p(x) ⇡ 1p
2⇡�2

e

�(x�x̄)2/2�2

=
1p
⇡N

e

�x

2
/N (for N >> 1)

N=1 N=2 N=3

N=4 N=5 N=20 p(x) =
e

�x

2
/20

p
20⇡



Multivariate random variables: let’s generalize to the case of  N 
random variables (X1, …, XN) which are not assumed independent.  

The PDF becomes a function of N variables p(x1,…,xN), and 
represents “probability per unit N-volume”. 

Example: a multivariate Gaussian (X1, X2) with a correlation 
between X1 and X2.  (To be defined precisely in a few slides!)



Example:  

Just to show an extreme case where the variables x1, x2 are  
very non-independent!

p(x1, x2) =

⇢
2
⇡ �(

p
x

2
1 + x

2
2 � 1) if x1, x2 � 0

0 otherwise

X1

X2



Does the central limit theorem still hold when the random variable 
is a vector Xi?  (In this case, a two-component vector)

Two X’s: Yi = X(1)
i +X(2)

i

Y2

Y1



Three X’s:

Y2

Y1

Yi = X(1)
i +X(2)

i +X(3)
i



Y2

Y1

Five X’s: Yi =
5X

j=1

X(j)
i



Y2

Y1

Ten X’s: Yi =
10X

j=1

X(j)
i

The distribution has become a multivariate Gaussian. 

In two variables, the multivariate Gaussian has five parameters: two 
“means”, and three parameters describing the size and orientation.



In N variables, the mean becomes an N-component vector
X̄i = hXii

The variance generalizes to an N-by-N covariance matrix:

Cov(Xi, Xj) = hXiXji � hXiihXji
= h(Xi � ¯Xi)(Xj � ¯Xj)i

In our example, a short calculation gives the mean and covariance:

X1

X2✓
C11 C12

C12 C22

◆
=

✓
0.095 �0.087
�0.087 0.095

◆

✓
X̄1

X̄2

◆
=

✓
0.64
0.64

◆



Now we can give the definition of a multivariate Gaussian PDF:

p(x1, · · · , xN ) =

1

Det(2⇡C)

1/2
exp

✓
�1

2

(xi � x̄i)C
�1
ij (xj � x̄j)

◆

The PDF of a multivariate Gaussian random variable is determined 
by its mean       and covariance matrix Cij = Cov(Xi, Xj)X̄i

In cosmology, we are usually interested in Gaussian random 
variables.  Therefore, it suffices to keep track of the mean (a 
vector) and the covariance (a matrix).



In this example:
✓

X̄1

X̄2

◆
= N

✓
0.64
0.64

◆ ✓
C11 C12

C12 C22

◆
= N

✓
0.095 �0.087
�0.087 0.095

◆

In the large-N limit, these determine the PDF (central limit theorem):

N=1 N=2

N=3 N=10

p(x1, x2) ⇡
1

Det(2⇡C)

1/2
exp

✓
�1

2

(xi � x̄i)C
�1
ij (xj � x̄j)

◆
(N >> 1)



Diagonal elements Cii of the covariance matrix are variances. 
Cii1/2 ~ characteristic size of fluctuations in Xi around its mean.

Off-diagonals Cij quantify the level of correlation between random 
variables Xi, Xj.  The correlation coefficient

is always between -1 and 1.

Corr(Xi, Xj) =
Cijp
CiiCjj

Cij = hXiXji � hXiihXji
= h(Xi � X̄i)(Xj � X̄j)i



p
C11

p
C22

r = �0.9

r = �0.5

r = 0.0

r = 0.5

r = 0.9

Visual representation of covariance matrix (where                         ) r =
C12p
C11C22



The CMB is a multivariate Gaussian random variable! 

If the map below is represented with N=107 pixels, then the 
statistics are described perfectly (as far as we know) by a 
multivariate Gaussian, whose N-by-N covariance matrix can 
be calculated numerically in the standard model.



Let Xi be an N-component random variable, and define an 
M-component random variable Ya by:

Ya = AaiXi

Ȳa = hAaiXii = AaiX̄i

Cov(Ya, Yb) = h(Ya � ¯Ya)(Yb � ¯Yb)i
= h(Aai(Xi � ¯Xi))(Abj(Xj � ¯Xj))i
= AaiAbjh(Xi � ¯Xi)(Xj � ¯Xj)i
= AaiAbjCov(Xi, Xj)

Or in index-free notation:
Ȳ = AX̄ CY = ACXAT

Then the mean (a vector) and covariance matrix transform as:

Behavior of mean and covariance under linear transformations.

(Aai is an M-by-N matrix)



Theorem (proof omitted): if Xi is Gaussian, then Ya is also 
Gaussian.  In this case, the mean and covariance completely 
determine the statistics. 

In particular, the question of whether a random variable Xi is 
Gaussian does not depend on the choice of basis.  (Changing basis 
Xi → X’i is the special case where A is invertible.)

For arbitrary random variables Ya = Aai Xi, the mean and 
covariance transform as:

Ȳ = AX̄ CY = ACXAT



Sometimes, problems involving random variables are linear algebra 
problems in disguise.   

Example: how to simulate (on the computer) a Gaussian random 
variable Xi with specified covariance matrix Cij? 



Sometimes, problems involving random variables are linear algebra 
problems in disguise.   

Example: how to simulate (on the computer) a Gaussian random 
variable Xi with specified covariance matrix Cij? 

Answer: diagonalize C 

C = R⇤R�1 ⇤ =

0

BB@

�1

�2

· · ·
�N

1

CCAwhere and R�1 = RT

Now simulate a Gaussian random variable Yi with covariance 
matrix L (straightforward, since L is diagonal). 

Define X = RY.  This is a Gaussian random variable with 
covariance matrix CX = R CY RT = R L R-1 = C, as desired.



Random fields. 

Consider an image fp with 2562 (say) 
pixels.  (where p=1, …, 2562). 

If fp is a random variable, then its 
covariance Cpp’ is a 2562-by-2562 
matrix.  (Assume mean     = 0 for 
simplicity.)

Now take the continuum limit:

pixelized image fp     →     continuous function f(x)

covariance matrix  
Cpq = <fp fp’>

f̄p

→ two-point correlation  
function <f(x) f(x’)>



Unless stated otherwise, we will be interested in random 
fields which are translation and rotation invariant, so that the 
two-point function < f(x) f(x’)> depends only on the scalar 
separation |x - x’|.

hf(x)f(x0)i = ⇣(|x� x

0|)

z is called the “correlation function”.



Now let’s compute the two-point function in Fourier space.

The quantity in brackets is called the power spectrum P(k). 

hf(k)f(k0)⇤i =
⌧✓Z

d

n
x f(x)e�ik·x

◆✓Z
d

n
x

0
f(x)eik

0·x0
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=

Z
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n
x d

n
x

0
D
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E
e

�ik·x+ik0·x0

=

Z
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n
x d

n
x

0
⇣(|x� x

0|)e�ik·x+ik0·x0

=

Z
d

n
x d

n
r ⇣(|r|)e�ik·x+ik0·(x�r) (r = x� x

0)

=

Z
d

n
r ⇣(|r|)e�ik·r

�
(2⇡)n�n(k� k

0)



We have now shown that the two-point statistics of a random field 
are given equivalently by:

hf(x)f(x0)i = ⇣(|x� x

0|)
⌦
f(k)f(k0)⇤

↵
= P (|k|) (2⇡)n�n(k� k0) in Fourier space

in real space

and the correlation function z(r) and power spectrum P(k) are related 
to each other by Fourier transforms (“Weiner-Khinchin theorem”):

P (k) =

Z
dnr ⇣(|r|) e�ik·r

⇣(r) =

Z
dnk

(2⇡)n
P (|k|) eik·r



A random field is Gaussian if its real-space values f(x) are a 
multivariate Gaussian random variable in the usual sense.  In 
this case, the statistics are completely determined by the two-
point function (either z(r) or P(k)).

Gaussian random fields are easy to think about in Fourier space, 
since the covariance is always diagonal:

⌦
f(k)f(k0)⇤

↵
= P (|k|) (2⇡)n�n(k� k0)

In Fourier space, a Gaussian random field is just a collection of 
independent Gaussian random variables f(k).

The delta function on the RHS of (*) can also be understood from 
translation invariance.  Under a translation x => x + a, the two-point 
function transforms as:

⌦
f(k)f(k)⇤

↵
! ei(k�k0)·a⌦f(k)f(k)⇤

↵

(*)



Example: Two-dimensional Gaussian random fields with 
power-law spectra P (l) / l↵

↵ = �3↵ = �2

“blue” spectrum scale invariant “red” spectrum
↵ = �1

(Note: cosmologists are hardwired to denote wavenumbers 
by k in 3D, by l in 2D, and by w in 1D.)



Reminder: for a Gaussian field, the statistics of the field are 
completely determined by the power spectrum P(k).

For a non-Gaussian field, this is not true!

cosmological density  
field at z=0

Gaussian field with 
 same power spectrum



Gaussian white noise: simplest example of a Gaussian random 
field.  The correlation function is a delta function. 

⇣(r) = A �n(r)

Each pixel value is an independent Gaussian random variable. 
(Covariance matrix is diagonal in real space and Fourier space!)



Gaussian white noise: simplest example of a Gaussian random 
field.  The correlation function is a delta function. 

⇣(r) = A �n(r)

Each pixel value is an independent Gaussian random variable. 
(Covariance matrix is diagonal in real space and Fourier space!)

Power spectrum P(k) is constant in k.  This follows from the 
Wiener-Khinchin theorem:

P (k) =

Z
dnr ⇣(r)e�ik·r

=

Z
dnr (A�n(r))e�ik·r

= A



A linear operator applied to a GRF (Gaussian random field) 
gives another GRF.  (This follows from the general statement 
that linear combinations of Gaussians are Gaussian.) 

Example: what is the power spectrum of a one-dimensional 
Gaussian random walk?  (Obtained by adding an independent 
Gaussian random number at each timestep.)



A linear operator applied to a GRF (Gaussian random field) 
gives another GRF.  (This follows from the general statement 
that linear combinations of Gaussians are Gaussian.) 

Example: what is the power spectrum of a one-dimensional 
Gaussian random walk?  (Obtained by adding an independent 
Gaussian random number at each timestep.)

To answer this, we note that a random walk is the integral of 
white noise.  Therefore:

fRW(!) =
1

i!
fWN(!)

PRW(!) =
1

!2
PWN(!)

=
A

!2



Another example which is more representative of the CMB.   
Let f(t,x) be a field which evolves via the wave equation:

✓
@

2

@t

2
� c

2
s
@

2

@x

2

◆
f(t, x) = 0 cs = “sound speed”

with the following initial conditions at t=0:

• f(x) is a Gaussian random field with power spectrum P0(k) 
@f/@t = 0

Question: what is the power spectrum PT(k) of a spatial “snapshot” 
f(T,x) at time t=T?



We take a spatial Fourier transform x → k (but not t→w). 
Then the wave equation                                becomes:

✓
@2

@t2
+ c2sk

2

◆
f(t, k) = 0

(@2
t

� c2
s

@2
x

)f = 0

f(t, k) = cos(cskt)f(0, k)

and the solution is (using                   ) @f/@t = 0

The spatial power spectrum PT(k) at time t=T is:

PT (k) = cos(cskT )
2P0(k)

i.e. time evolution imprints peaks on the power spectrum.



3D power spectrum 
of initial conditions 

(adiabatic curvature)
2D CMB power spectrum

k3P (k)

2⇡2

l2Cl

2⇡

Analogously, time evolution “imprints” features on cosmological 
power spectra, starting from a featureless initial power spectrum.

wavenumber k (Mpc-1) angular multipole l

acoustic 
scale 

(l ~ 200)

damping 
scale 

(l ~ 1500)



Curved sky.

So far, our fields have been defined on Euclidean space, but some 
fields are defined on the unit sphere, e.g. CMB temperature T(q,f).

In Euclidean space, any field f(x) can be represented as a linear 
combination of plane waves eikx (Fourier transform). 

Analogous statement on the sphere: any field f(q,f) is a linear 
combination of spherical harmonics Ylm(q,f).



The spherical harmonic Ylm(q,f) is a special function defined 
for integers l = 0,1,2,… and m = -l, (-l +1), …, l .
Spherical analogue of a plane wave eikx.  The wavenumber l  is 
quantized (an integer), and there are (2l +1) harmonics for each l.  

l =0 (monopole)

l =1 (dipole)

l =2 (quadrupole)

l =3 (octopole)

Any function f(q,f) is representable as f(✓,�) =
P

lm almYlm(✓,�)



Euclidean field                                Spherical field

f(✓,�)f(x)

power spectrum

f̃(k) alm

alm =

Z
d(cos ✓) d� f(✓,�)Y ⇤

lm(✓,�)f̃(k) =

Z
dnx f(x)e�ik·x

f(x) =

Z
dnk

(2⇡)n
f̃(k)eik·x f(✓,�) =

X

lm

almYlm(✓,�)

⌦
f(k)f(k0)⇤

↵
= P (k) (2⇡)n�n(k� k0)

⌦
alma⇤l0m0

↵
= Cl�ll0�mm0

inverse transform

harmonic transform

harmonic-space representation

real-space representation



Part 3: forecasting and the Fisher matrix



By my estimation, there are ~100 cosmology papers per year which 
are mainly concerned with computing a “Fisher matrix” Fab. 

What is the Fisher matrix and why is it so widespread? 



By my estimation, there are ~100 cosmology papers per year which 
are mainly concerned with computing a “Fisher matrix” Fab. 

What is the Fisher matrix and why is it so widespread? 

Motivating example: forecasting parameter sensitivity of the CMB

Planck 2015



Abstract setup:

“model parameters” {qa}

e.g. rL, Wb, Wc, Dz2, ns, t

“data” d
e.g. CMB multipoles alm

p(d|q)

The data d is a random variable whose probability distribution 
depends on the model parameters qa.

p(d|q) = conditional probability distribution of data d, 
    given model parameters q



“model parameters” {qa}

e.g. rL, Wb, Wc, Dz2, ns, t

“data” d

e.g. CMB multipoles alm

p(d|q)

We might be interested in:

1. Simulation.  Given a model qa, how do we simulate a random 
data realization d?  (i.e. sample the conditional PDF p(d|q))

2. Analysis.  Given a data realization d, what are the constraints 
(say at 95% CL) on the model space qa?

3. Forecasting. Given a rough fiducial guess qfid for the true 
model, what constraints on the model space do we expect to 
obtain, for a “typical” realization of the data?

The Fisher matrix is a tool for forecasting (#3).



“model parameters” {qa}

e.g. rL, Wb, Wc, Dz2, ns, t

“data” d

e.g. CMB multipoles alm

p(d|q)

General definition of the Fisher matrix (to be motivated later!)

where the expectation value is taken over random realizations of the 
data d, for a preferred fiducial choice of model parameters qfid

The Fisher matrix depends on the fiducial model qfid, but does not 
require a preferred realization of the data d (just the probability 
distribution p(d|q)).

Fab = �
⌧
@2

log p(d|✓)
@✓a @✓b

�

d



Interpretation: the Fisher matrix Fab is the forecasted inverse 
covariance matrix of the model constraints obtained from a 
“typical” realization of the data.

“model parameters” {qa}

e.g. rL, Wb, Wc, Dz2, ns, t

“data” d

e.g. CMB multipoles alm

p(d|q)

q1

q2

qfid

(F-1)11

(F-1)22

Fab = �
⌧
@2

log p(d|✓)
@✓a @✓b

�

d



Toy example: linear regression
Fitting a line y=Ax+b through points (xi,yi) with error bars si.



The following scatterplot shows the result of repeating the linear 
regression 100 times.  (Detail: the y-values were randomized, but 
xi and si were held fixed throughout.)

Let’s compute the Fisher matrix for the model parameters 
(q1,q2) = (A,b), and compare with this plot.



“model parameters” {qa}
A,b

“data” d

y-values yi

p(d|q)

First we need to write down the conditional likelihood p(d|q).
Given (q1,q2) = (A,b), the PDF of an individual data value yi is 
a Gaussian with mean (Axi+b) and variance si2:

introducing the two-vector notation fa(x) =

✓
x

1

◆

p(yi|✓) =
1
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i )

1/2
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“model parameters” {qa}
A,b

“data” d

y-values yi

p(d|q)

The conditional likelihood p(d|q) is obtained by multiplying the 
PDF’s for each individual data value yi.

Now we can compute the Fisher matrix Fab = �
⌧
@2

log p(d|✓)
@✓a @✓b

�

d

p(d|✓) =
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In this example, the expectation value < >y  is trivial, and the Fisher 
matrix does not depend on a choice of fiducial model qfid = (Afid, bfid).
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Comparison between Fisher matrix and Monte Carlo scatterplot.



Example: supernova (not CMB) Fisher matrix from Wolz et al 1205.3984

A cosmological example.  In general, the Fisher matrix is not 
expected to agree precisely with the Monte Carlo scatterplot.  In 
particular, the contours of the scatterplot need not be ellipses.  
However, the Fisher matrix is usually easy to compute, and is 
usually a good approximation.



Switched to blackboard here.  For the blackboard 
part of the lecture (about 90 minutes total), see:

http://pirsa.org/18070002/     40:00 - 80:00
http://pirsa.org/18070003/     0:00 - 45:00



Part 4: observational cosmology, 
past, present and future



In the last few decades, observational cosmology has made 
amazing progress:

[H = ȧ/a and q = �äa/ȧ2]

(some quotes taken from a talk by Enrico Pajer)

• Sandage (1970): “Cosmology is a search for two numbers” 

• Peebles: “I did not continue (with computation of CMB 
anisotropy), in part because I had trouble imagining that 
such tiny disturbances could be observed”  [1992 (COBE)] 

• Sunyaev: “I did not think that the acoustic oscillation would 
ever be observed” [2000 (multiple experiments)] 

• Mukhanov: “I thought it would take 1000 years to detect the 
logarithmic dependence of the power spectrum”  
[2006 (WMAP)]



Good: cosmology provides a real glimpse of physics beyond 
the (particle physics!) standard model 

Planck: Cold dark matter detected at 80𝜎 
             Cosmological constant detected at 75𝜎

No DM 
No CC

Bad: only measure a small number of parameters, hard to test 
competing hypotheses, or narrow down to a specific model.



Six-parameter standard model: 
rL = (2.56 ± 0.04) x 10-47 GeV4 
Wb = 0.0486 ± 0.0007  
Wc= 0.267 ± 0.009 
Dz2 = (2.11 ± 0.05) x 10-9 
ns = 0.967 ± 0.004 
t = 0.058 ± 0.012

Dark energy density (c.c.)
Baryonic matter abundance

Initial power spectrum amplitude
Spectral index
CMB optical depth

Cold dark matter abundance

• Non-Gaussian initial conditions (fNL = 2.5 ± 5.7) 
• Non-minimal neutrino mass (mn < 0.23 eV at 95% CL) 
• Extra neutrino species or other light relics (Neff = 3.04 ± 0.18) 
• Nonzero spatial curvature (WK = 0.000 ± 0.005) 
• Time-dependent dark energy density (w = -1.02 ± 0.08) 
• Cosmological gravity waves (r < 0.12 at 95% CL)

Extensions:

+ many more!



Parameter

⇢b
(⇢b + ⇢c)

ns

Forecasted 
uncertainty (1999)

Reported 
uncertainty (2015)

⇤/⇢
tot

0.94% 0.72%
1.6% 0.9%

0.0076 0.0048
0.022 0.0087

Forecasts suggest that there is still a lot of room to shrink error 
bars in future experiments. 

Should we take futuristic forecasts seriously?  Historical exercise: 
Tegmark (1999) forecasts for Planck, very futuristic at the time.

Planck somewhat outperformed its forecasts.



Amplitude A⇣

Spectral index ns

DM density

Bary. density

Cosm. constant ⇤

Optical depth ⌧

ρc,0 

ρb,0 

2.567 ± 0.051 (×10-47 GeV4)

0.2618 ± 0.0087

0.04884 ± 0.00085 0.04860 ± 0.00070 (×ρtot)

0.2589 ± 0.0063 (×ρtot)

2.543 ± 0.071

CMB alone

+ baryon acoustic oscillations 
+ type IA supernovae 
+ direct H0 measurements

2.130 ± 0.053 2.142 ± 0.049
0.9653 ± 0.0048 0.9667 ± 0.0040

CMB currently dominates constraints on 6-parameter model space

CMB

0.063 ± 0.014 0.066 ± 0.012

Not true in extensions of standard model!  Non-CMB datasets are 
important when more parameters are added.



CMB temperature observations can constrain the cosmological 
constant L, even though L is negligible when the CMB is formed!

How?  By changing the distance D at which the CMB surface is 
observed.

D



CMB distance degeneracy: in a parameter space with N “late 
universe” parameters, there is an (N-1)-fold degeneracy. 

For example, WL and spatial curvature (WK).  Before Planck 
(2013), the CMB power spectrum was consistent with either 
possibility!

D



Planck can tell the difference between L and spatial curvature. 
The distance degeneracy is broken by CMB lensing, which I’ll 
describe in the next few slides.

Lensing moves existing 
temperature fluctuations 
around, but does not generate 
new anisotropy (lensing 
conserves surface brightness)

unlensed 
geodesic

lensed 
geodesic

Shown exaggerated here!  
Actual lensing deflections 
are a few arcminutes.



Unlensed vs lensed CMB



Unlensed vs lensed CMB



Effect of CMB lensing on the temperature power spectrum. 
Lensing smooths peaks and adds power on small scales (high l). 
Breaks the distance degeneracy (plot forthcoming in a few slides).



Another way to break the CMB distance degeneracy is by 
using non-CMB datasets, especially BAO (baryon acoustic 
oscillations) measurements in galaxy surveys.

First, some terminology: the CMB acoustic peak scale 
la ~ 200 can be interpreted as a “standard ruler”.

D



A galaxy survey measures the number density of galaxies 
throughout the universe.  (A 3D field, since redshifts and 
angular locations are measured.) 



The 3D power spectrum of the galaxy density field can be 
used to constrain cosmological parameters.  (In galaxy 
surveys, the correlation function z(r) is usually used instead 
of the power spectrum P(k)). 

Like the CMB, the correlation function z(r) contains an 
acoustic feature which can be used as a “standard ruler”.

SDSS (2012)



• “Transverse” observation constrains D(z) 
• “Radial” observation constrains H(z)

D(z)

Furthermore, can measure D(z) and H(z) as functions of z!  
(Unlike the CMB, where there is only one source redshift.)

More precisely, there are two standard rulers:

Galaxy BAO measurements are very powerful for constraining 
expansion history and breaking degeneracies between parameters.



Planck 2015

Black ellipses: unlensed CMB 
Blue ellipses: lensed CMB 
Red ellipses: lensed CMB + BAO



Current constraints on expansion history:

Bad news: there is no natural threshold for these parameters, so 
this is a fishing expedition (as far as I know!) 

WL = 0.691 ± 0.006
WK = 0.000 ± 0.005

i.e. the DE energy density at z=1 is uncertain by 24% (at 1s)!

w = -1.02 ± 0.08

Good news: these constraints will improve by an order of magnitude 
in the not-too-distant future (mainly from better BAO data).

cosmological constant
spatial curvature
dark energy equation of state

The last parameter (w) parameterizes the time dependence of 
dark energy density as r ~ a-3(1+w), i.e. w = -1 corresponds to a 
cosmological constant.



Temperature E-mode linear 
polarization

B-mode linear 
polarization

E/B decomposition of linear polarization (traceless symmetric 
tensor) is similar to gradient/curl decomposition of vector field.

CMB polarization



Theorem: (scalar sources) + (linear perturbation theory) 
                    ⇒ (no B-modes are generated)

B-modes are different

Rephrased: B-modes only arise from

• Primordial gravity waves (non-scalar sources) 
• Second-order effects (largest by far is CMB lensing)

Some models of inflation predict primordial gravity waves.

ds

2 = �dt

2 + a(t)2e2⇣(x)(�
ij

+ h

ij

(x))

Parameterized by “tensor-to-scalar” ratio r = Ph(k)
P⇣(k)

Current upper limit: r < 0.12 (95% CL), mainly from CMB 
temperature.



CMB temperature and polarization power spectra

TT TE

EE BB



TT

TE EE



Current gravity wave constraint: r < 0.12 (95% CL)

• In the next few years, BB will be measured much better, 
and the limit will improve to r ~ 10-2 

• On a ~20 year timescale, the limit will be r ~ 10-3 or 10-4.

TT BB

I predict that:



A detection (or non-detection) of r at the ~10-2 level would be 
very informative!

E.g. consider single-field slow-roll inflation on potential V(f).

S =
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In the next few slides, I’ll explain the following picture:

Case 1: r is detectable Case 2: r is very small



Single-field slow-roll inflation: 1-slide theory review

For inflation to occur, the “slow-roll” parameters:

✏ =
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must both be << 1.  Some key results:

[energy scale of inflation]

Plug in ns ~ 0.97 and Dz2 ~ (2 x 10-9) to the last two equations:

ns � 1 = �6✏+ 2⌘

r = 16✏

V 1/4 = r1/4
⇣
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2

⌘1/4

MPl

V 1/4 = r1/4 ⇥ (3.23⇥ 1016 GeV)

�6✏+ 2⌘ = �0.03



r = 16✏

V 1/4 = r1/4 ⇥ (3.23⇥ 1016 GeV)
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r = 16✏

V 1/4 = r1/4 ⇥ (3.23⇥ 1016 GeV)

�6✏+ 2⌘ = �0.03
✏ = M2
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Scenario 1: e and h are both 
of order ~10-3-10-2.  Energy 
scale of inflation must be in a 
narrow range near 1016 GeV.



r = 16✏

V 1/4 = r1/4 ⇥ (3.23⇥ 1016 GeV)

�6✏+ 2⌘ = �0.03
✏ = M2

Pl
2
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⌘2

⌘ = M2
Pl

⇣
V 00(�)
V (�)

⌘

Scenario 1: e and h are both 
of order ~10-3-10-2.  Energy 
scale of inflation must be in a 
narrow range near 1016 GeV.

Scenario 2: e is much smaller 
than h.  (First derivative of 
potential is very small.)  
Energy scale of inflation is 
anywhere between ~10 TeV 
and ~1016 GeV.



Consider the unlensed TT power spectrum. 

The parameters Dz2 and t are degenerate: they only affect the CMB 
via the combination (Dz2 e-2t), which sets the height of the peaks.

The optical depth degeneracy in the CMB.

CTT
l / �2

⇣e
�2⌧



The CMB optical depth degeneracy can be broken through either:

• Gravitational lensing, since the amount of lensing in the late 
universe depends on Dz2 but not t.

• EE at very low l, which is proportional to (t2 Dz2).

TT EE

t2 Dz2

Dz2 e-2t

Dz2 e-2t



Cosmology and neutrino mass

�m2
⌫

�m2
31 = (0.049± 0.0012 eV)2

�m2
21 = (0.0087± 0.00013 eV)2

P
⌫ m⌫

Neutrino oscillation experiments measure            between species

Cosmology is complementary: mainly sensitive to 

Neutrino mass suppresses gravitational lensing (and other probes 
of large-scale structure) in the late universe.

Very schematically:

(Amount of lensing) ~ Dz2  * (complicated function of mn)



Cosmology and neutrino mass

Consequence: to constrain neutrino mass, we need both lensing and 
low-l EE to break the CMB optical depth degeneracy.

(Peak heights) ~ (Dz2 e-2t) 
(Low-l EE amplitude) ~  (t2 Dz2) 
(Amount of lensing) ~ Dz2  * (complicated function of mn)

This may be a serious problem, since current Planck EE 
measurements may become a limiting factor, and it is not clear 
how to improve them. 

(Difficult to measure low-l EE from ground-based telescopes, and 
there is not a post-Planck CMB satellite on the horizon.)



CMB-S4 Science Book



Extra light degrees of freedom

The CMB is sensitive to the total energy density of radiation 
(=relativistic species) during the epoch of CMB formation.

This is usually quoted as an “effective” number of neutrino 
species Neff, but any relativistic species (neutrino or otherwise) 
will contribute!

The contribution depends on:
• spin of particle 
• boson vs fermion 
• time of decoupling from thermal plasma (species which 

decouple early contribute less)



arXiv:1305.1971

Current constraint: Neff = 3.04 ± 0.18
Futuristic CMB constraint: DNeff ~ 0.02
Could discover new particles with the CMB!



Thanks!


