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Anisotropies

After monopole and dipole are removed, the microwave sky
reveals small anisotropies.




Anisotropies

Only the correlation functions can be predicted by theory
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as well as higher n-point functions



Anisotropies

For data analysis and comparison with theory, it is more
convenient to use multipole coefficients

orim = [ 0 Y ()AT(0)

A / i Y () (Q(R) + iU (7))



Anisotropies

For data analysis and comparison with theory, it is more
convenient to use multipole coefficients

AT o = / d2h Y () AT (7)
0o — / i Y (R) (Q(R) + iU (R))

agem = —(apem + apg_m)/2

AB 4 m = Z'(UJP,EWL _ a?’,é —m)/2

under parity aOF 0m — (—1)€CLE,gm “sradient”

AB ¢m —7 —(—1)£CLB,em “curl”



Anisotropies

The correlations are then encoded in the angular power
spectra

k
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For Gaussian fluctuations these contain all the information,

for non-Gaussian fluctuations we would need higher n-point
functions
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Newtonian warm-up

Equations of motion for fluid in the Newtonian theory

Vip = AnGp

Consider perturbations in a fluid at rest with constant
density and pressure

p(t,x) = p+ op(t, x)
p(t,x) = p + op(t, x)

v(t,x) = ov(t,x)



Newtonian warm-up

Equations of motion for perturbations to linear order

dop  _
E+pv-5V—O
OOV c?
M AV T
o1 5 VP Vo
VZp = AnGdp

or combining the first two

op — c2V25p — 4rGpép = 0



Newtonian warm-up

Translational invariance suggests to Fourier transform
Opi + 2 k?5px — 4rGpépx = 0

so the dispersion relation is
w? = c2k* — 4nGp

¢ Sound waves on small scales

* Instability to gravitational collapse on large scales
(Jeans instability)

In FLRWYV, the growth becomes linear rather than
exponential, but the basic picture remains.



General Relativity - Part I

We saw that the line element and stress tensor in the FLRW
universe are described by

ds® = —dt* + a*dz”
T = pdt* + a*pdz”

To describe the anisotropies, we must consider small
perturbations around the FLRW background

ds* = (=1 + hgo)dt® + 2ho;dtdx’ + (a®5;; + hy;)dz'da?

T = (,5 -+ 5T00)dt2 -+ 25ngdtdxz -+ (&2]557;3' + 5Tw)dﬂfzd$]



General Relativity - Part I

Under an infinitesimal coordinate transformation
ot — ot + ' (x)

the perturbations transform

Ahgo = —2%
(’9@- 5’60 a
Ah ;= — — . 2— i
0 ot  Ox* * ae
Oe; e
Ahij = —ax aaj + QCLCLGO

We can use and choice of coordinates (or gauge) that is
convenient



General Relativity - Part I

Under an infinitesimal coordinate transformation
ot — ot + ' (x)

the perturbations transform

Ahgo = —2%
Bei 5’60 a
Ah ;= — — , 2— i
0 ot  Ox* * ae
Oe; e
Ahij = —ax aaj + QCLCLGO

We can use and choice of coordinates (or gauge) that is
convenient, e.g. synchronous gauge

hoo = 0 hoi = 0



General Relativity - Part I

In synchronous gauge
ds* = —dt* + (a®8;; + hy;)dz'da’
0T = dpdt® — 2(p + p)du,dtdz* + (a*(6pdi; + mij) + Phyj) da'da’

We can decompose the perturbations into scalar, vector, and
tensor perturbations.

Tij = 0;0,m + &my +0;m) + 7T,z;-



General Relativity - Part I

In synchronous gauge
ds* = —dt* + (a®8;; + hy;)dz'da’
0T = dpdt® — 2(p + p)du,dtdz* + (a*(6pdi; + mij) + Phyj) da'da’

We can decompose the perturbations into scalar, vector, and
tensor perturbations.

Su; = 0;0u + ou)
Tij = &-@-WS =+ azﬂ'JV + ajﬂ-y + 7TZ;-

Rotational invariance of the background imply that these do
not mix and we can study one at a time.



General Relativity - Part I

Equations of motion for scalar modes

Einstein equations

2 .
—v—2A+3 A+ “y2p 8 Gdp (00)
a a a
A = 81G(p + p)du (01)
2
LVoa A 3— A——v23—59v23—8wa(5p
2 a2 2 a
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“ A+ a?B + 3aaB = 167Ga’1°



General Relativity - Part I

Equations of motion for scalar modes

Energy and momentum conservation

3a V?

0p + (5p—|—5p)—|-?[( +P)ou + aar]

]

a

(5 + D) (3A+ sz) — 0

DY | —

_|_

1 0
2_S 3(+ 1 = _
op+ Vom +a35’t a’(p+Dp)ou] =0

Similarly for vectors and tensors



Equations of motion

Consider the universe at a time early enough for rapid
thermalization, not so early that other degrees of freedom
appear in the plasma

6 x 10°K < T < 10°K

In ACDM ~p
€ He

8 dark matter

cosmological
constant



Equations of motion

How do we describe the various components!?

Electrons and protons elastically scatter very efficiently.
They can be described as one “baryon” fluid.

For cold dark matter a “hydrodynamic” description is also
sufficient because it is extremely non-relativistic, i.e.“dust”.

Neutrinos free-stream, leading to anisotropic stress.
They are usually described by a Boltzmann hierarchy.

If we are interested in the polarization of photons we have
to keep track of it and describe them by a Boltzmann
hierarchy.



Equations of motion

Toy example:

Perturbations in a thermal gas of massless particles

Instead of keeping track of the trajectories of all particles,
we will describe it by the phase space density

Since . 1=
:ET A p’l"
= and =0
a dt
it satisfies a collisionless Boltzmann equation
on A
= —p-Vn

ot



Equations of motion

Toy example:

Temperature perturbations are related to intensity
perturbations by

dI,
dT |,

A differential measurement sensitive to all frequencies
probes

AL (n) =

AT(7)

/ dv Al (n) 4AT / dvi,
0 0

This makes it natural to define the “temperature’ anisotropy

L 1 fpidp .
AT(QE,p) = F/ 5%(33,]?]9)



Equations of motion

Toy example:

It satisfies
OAT(Z,p,t . o
ot
Translational invariance suggests to look for solutions

- A d3q i
AT(xapvt) :/(QW)g&(ﬂAT(Q7:uat)eq

q-p

aAT(Q? s t)
ot

(Of course, the solution to this equation is trivial, but let’s keep going)



Equations of motion

Toy example:

The temperature anisotropies at the origin at some time ¢
are

if we expand

Ar(g, g to) = Y (=) (20 + 1) Po(p) A (g, to)
¢

we find the multipole coefficients

. d*q .
AT ¢m :WZK/ (2ﬂ)3a(®nm(Q)AT,€(Q7t0)



Equations of motion

Toy example:

This suggests to derive equations directly for

A1 .e(q,t0)

These equations are called the Boltzmann hierarchy
In our toy example

q
20+ 1

Are(q,t) + (£ +1)Are1(q,t) — LAT-1(q, )] =0

Analogous equations can be derived for the polarization
anisotropy.



Equations of motion

Beyond the toy example

For interacting particles one finds

OAT(q, 1,1 .
T(aqt - ) + ZQIUAT(q7 by t) — _MAT<Q7 M, t) + wk [AT’O(q’ t)’ AT’2(q7 t)7 t]

with formal solution

A (i t) = A (g, e eoli—0)
t
- / dte ") e~ ) (AT (g, 1), Ara(q, 1), ¢]
ti
Since only low multipoles appear in the collision terms,

one can solve a truncation of the hierarchy and obtain the
higher multipoles through this “line-of-sight integration™



Equations of motion

Beyond the toy example

The same derivation generalizes to a general spacetime

In this case define the phase space density
7p27 Z(SCC _':C ( p’t’l“(t))

The definition of momentum and the geodesic equation imply

dz'  p dp;  pp' Ogp

dt  p° dt  2pY Oxt

on N p* On N 1 pFp!t g™ On
ot pYoxk 2 pb Oz™ Op,,
Derivation of the Boltzmann hierarchy as before but more
tedious.

=C

and



Equations of motion

Photons
x (S q S (S)
Ag,,,z(q, t) + o201 1) [(f T 1)A(T,2+1(q, t) — gAT,E—l(Qa t)}
. : 1 2
— _wc(t)Agfz (CL t) - 2Aq5£,0 + 2q2Bq <§5£,0 o B6£’2>
1 4
twe AT )00 + Towelloe2 — g%wc&bb q0¢,1
x (S q S (S)
A%j (q,t) + a(20 + 1) (£ + 1)A%,Z+1(q,t) - KAP7£_1(q,t)}
(5) 1 1
= —we AR (1) + JweTg1) (80 + 200,

with source function

I = AP +AF) +AR)



Equations of motion

Photons
A (S q S S
| . /1 2
— _wc(t)Agfz (CL t) - 2Aq5£,0 + 2q2Bq <§5£,0 o B6£’2>
1 4
Fao A 500 + Swlldy s - ggwcaubq(sg,l
A (S q S S
ARt + ey [+ AR (0 — AF) (0.0)]
(5) 1 1
= —we()AE) (0,0) + Swet)TT(a,7) (B + 200

with source function

n o= Al +Ag§;

Polarization sourced by temperature quadrupole



Equations of motion

Photons

The components of the stress tensor can be written as

S
510’761 — p'yAéﬂ,()H
p s s
0Pyq = - (AEF,())"I"A%’,%)»

3

3a S
OUyg = —ZgA(T,ia

— S
5, = BAL

At early times when Compton scattering is efficient
Arey—0 for £>2
Ap)g — 0

The Boltzmann hierarchy reduces to the equations of
hydrodynamics



Equations of motion

Neutrinos

\ q
A + gy | DA (00— AT (0. 1)] =

. . (1 2
— 2Aq(5£,0 + 2Q2Bq <§5€,0 _ 1_55€,2)

Baryons

Energy conservation
. 3a q° 1 : )
0Pbq + ;5pbq - ?ﬁb(subq + 5P <3Aq —4q Bq) =0

Momentum conservation

. 4p 3a . (s)
Oy, + ——w,(t <5u + ——A q,t)—()
it g 2a®) (g + 10 AT (0.1



Equations of motion

Dark Matter

 3a 1 .
Sfeq + —0peq + 5Peq (34, - ¢*B,) =0

Scalar metric perturbations

2 a .
q—Aq—Fg (3Aq - quq) = 8rG (5:0qb +0pge + ﬁvAgg T EVA’(/’SO))

CL2

. B a_ a_
Ay =81G (pb5ubq - 5@#?}((1, t) — 5%&?(% t))



Initial Conditions

What remains is the choice of initial conditions

HA
k/a

} >
Qrec a

All modes are “outside the horizon” at early times.

1 «H
a



Initial Conditions

At early times the Boltzmann hierarchy for photons
reduces to the equations of hydrodynamics

This suggests we can look for a solution of the form

S S 4 q (S
Al A;} — —§a5ubq = AP

These are adiabatic initial conditions



Initial Conditions

o A
In this limit R, = 7‘1 + Hdu, becomes a constant
and we can normalize our solution such that R, — 722

Then during radiation domination

2,9

(S) A gt o,

A0 (Q7t)_§a2<t)7zqa
343

(S) 8 gt
A1 (q’t)_ﬁa?’(t)Rq’

S 16 ¢t
ALY (g,1)

2 Af, q*t
Aﬂw:<é sy 4 )RO

C3154+4f,a%(t))V
: 20 gt
2B, (t) = R
TB = 150y e e
23 +4f,
A (g, t) = ZEM A9 g 1)

15441,



Initial Conditions

These are the equations and initial conditions used by the
Boltzmann codes such as CAMB or CLASS.

With the solution at hand, one computes

] mx* /[ ~ S
o) = nTyit / Pq oY ()AE)(g, to)

or directly
2

S S
Cipy = 7°T5 / q°dq ‘A%}(q, to)
similarly for polarization and tensor contribution

* / AN CLASS

the Cosaic Linear Anisotropy Sol

Code for Anisotropies in the Microwave Background

by Antony Lewis and Anthoay Challinor



Cosmological Parameters

By performing a likelihood analysis, one arrives at

Parameter Planck alone
Quh® ... 0.02237 + 0.00015
O K e A 0.1200 + 0.0012
1DOOEG s s nis s s 1.04092 + 0.00031
A R 0.0544 + 0.0073
In(10°A) ...... 3.044 +0.014
Py soie. 5, st 4 Sveie & o 0.9649 + 0.0042

(Planck Collaboration 1807.06205)



More on temperature anisotropies

Recall that the temperature anisotropy is given by

AT (n 1 . .
T(E ) — ZAT(x — 07 —n, tO)

where A1 (Z, p, ty) satisfies a Boltzmann equation.

We looked for solutions of the form

= A d’ 1q-T
AT(xvpvt) :/(Qﬂc)lga(CDAT(QmLLat)eq

and expanded A7 (q, i1, t) in terms of Legendre polynomials

AT(q7 H t) — Z(_Z)K(QK + 1)P€(M)AT,€(Q7 t)
¢
to arrive at the Boltzmann hierarchy.



More on temperature anisotropies

For scalar perturbations

S q S S
AN + oy [+ VAR (01) — EAT (a1

: : 1 2
= —we()AS) (g, 1) — 24,0, + 24, ( bt0 = 0, )

15
(S) 1 4 g
_I_WCAT’O(SE,O + TOWCH5€,2 - §Ew65ub q5£,1

A (S q S S

1 1
= @A) + el 0) (Seo+ 3012)

Let’s undo the last step and consider the equation
satisfied by A( )(q,,u,t)



More on temperature anisotropies

Agk%u,%+%77A(R%M¢)=—wdﬂﬁgk%uﬁ)
1

FweAT(g: 1) = SwePa(u)IL(g, 1)

49 ' '
= e ()0u o (1) — 244(t) + 2042 B, (t)

a(t)
Ag%%ui%+ﬁxjA(V%ui)Z—wdﬂﬁfk%uJ)
()1~ p)TI(g,

with source function

M = AR+ AR +AR)



More on temperature anisotropies

The formal solution obtained by line-of-sight integration
to

to dt/ to
A (g, pto) = / dt exp [—iqu / - / dt’ w.(t')
t t

/ a(t’)

e [ AL = SRR, 6) - 207(0) By 1) — 20004 0

g (5u,(0)/a(0) + a0 B,(0)/2) |

- % (qu(t> +2a%(t) B, (t) + 2a(t)a(t)Bq(t)) }

shows that the temperature perturbations consist of two
contributions

(5 - (5 (1),




More on temperature anisotropies

(B70) " - [ ot

. / dt exp [—iq,u /t ! a‘zj)] exp [— /t ! dt’wc(t’)] (1)

t1

x HA&%W) — P ()TI(g,t) — S (0)By(0) — Sa(t)i() By(t

ting (Sua(0)/alt) + () By (0)/2)



More on temperature anisotropies

AT\ [ dq
( To )LSS B / (27r)3a@ Last scattering probability
to t() dt/ tQ
X /dt exp [—iq,u/ a(t’)] exp [—/ dt’wc(t’)] we(t)
t t
t1

x HA&%W) — P ()TI(g,t) — S (0)By(0) — Sa(t)i() By(t

ting (Sua(0)/alt) + () By (0)/2)



More on temperature anisotropies
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More on temperature anisotropies

(B70) " - [ ot

. / dt exp [—iq,u /t ! a‘(ii:)] exp [— /t ’ dt’wc(t’)] (1)

t1

< IGAERa: 1)~ §Pau)TNa.0) — 3@ OB, (0) - Jaa)B

tina (Sua(0)/alt) + () B (0)/2)

Intrinsic density fluctuation and
gravitational redshifting



More on temperature anisotropies

(B70) " - [ ot

. / dt exp [—iq,u /t ! a‘(ii:)] exp [— /t ’ dt’wc(t’)] (1)

t1

< IGAERa: 1)~ §Pau)TNa.0) — 3@ OB, (0) - Jaa)B

@uq@)/a(t) +a(t)B,(1)/2
Intrinsic density fluctuation and

gravitational redshifting

Doppler effect



More on temperature anisotropies

5000}

— 4000}

9 [

= A

Q 3000f Sachs-Wolfe
S [

= : Doppler
& 2000f

S

1000}

5 10 50 100 500 1000



More on temperature anisotropies
Integrated Sachs-Wolfe effect

(A1) " [ oo

to

S ol el [

t1

x% (Ag(t) + (1) By () + a(t)a(t) B, (1))

This contribution can be generated even in the absence
of free electrons.



More on temperature anisotropies
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More on temperature anisotropies

During matter domination the gravitational potential
does not evolve

d

dt (Aq(t) +a® () By (t) + a(t)d(t)Bq(t)) =0

The integrated Sachs-Wolfe effect has two
contributions

early contribution:

During recombination radiation is not yet
completely negligible.

late contribution:

At late times dark energy becomes important



More on temperature anisotropies

Early vs late ISW
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More on temperature anisotropies

Recombination vs late time contributions
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More on temperature anisotropies

Recombination vs late time contributions

5000 L _—7

T .
e ' suppression from
4000 reionization

3000} ':

((+1)C, 27 uK?]
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More on temperature anisotropies

Much of this can be understood analytically. Let us focus on
the dominant Sachs-Wolfe and Doppler contributions

(B70) " - [ ot

y / dt exp [—iq,u /t ! a‘(ii:)] exp [— /t ’ dt’wc(t’)] (1)

t1

x HA%M — P ()TI(g,t) — S (0)By(0) — Sa(t)i() By(t

ting (Sua(0)/alt) + () By (0)/2)

and as a first approximation set P(t) ~ (¢t — tr.).



More on temperature anisotropies

After neglecting contributions from polarization and anisotropic
stress

AT () ) 43 .
( ( )) _ / qga((j)ezq nry,
TO LSS (27’(’)

< TASa.t0) - 50200 Byltn) — Jalte)ien) B

ing (Sug(t2)/alte) + a(t2) By(12)/2) |



More on temperature anisotropies

The multipole coefficients are

3
S - d q x (A
o) = dmit [ S SGa@Yin (@

<[ (38500 00) - Je(en)Batee) — Ja(ea)a)Byo0) ) dears)

+iq <5uq(tL)/a(tL) + a(tL)Bq(tL>/2) jé(q"“L)]

The behavior of the spherical Bessel functions for/ > 1 implies
that the dominant contributions arises from wave numbers

qry ~ 4



More on temperature anisotropies

For the adiabatic solution, modes are frozen outside the
horizon. So the behavior of modes will be very different for

T 1 or L <1

CLLHL CLLHL

HE_ N\

arec a




More on temperature anisotropies

Where does the transition happen?

q ¢ /

—_— Y

CLLHL B aLrLHL -~ 60

/< 60 contribution predominantly from modes

still frozen during recombination

¢/~ g0 contribution predominantly from modes
inside the horizon during recombination



More on temperature anisotropies

For the frozen long modes we can write the multipole
coefficients in terms of the curvature perturbation

3
(5) it [ 44 iy

and for a scale-invariant™ primordial power spectrum

f(é -+ 1)05 T02 AQ
2T 25

This is sometimes referred to as the Sachs-Wolfe plateau

(*) it can also be evaluated for the LCDM power law spectrum



More on temperature anisotropies

The short modes enter the horizon before recombination. For
simplicity we will consider modes that enter during radiation

domination.

q / /
— — > 1
AeqH e aequHeq 140

When the modes enter a large number of free electrons are
present and we can expand in ¢/awe.

This is referred to as the tight-coupling expansion.



More on temperature anisotropies

At leading order, the Boltzmann hierarchy reduces to the
hydrodynamics, and the solutions are sound waves.
The Sachs-Wolfe contribution takes the form

0 [ d’q .
) =i’ [ L R@Y7(0)

(2m)?
3 1 .
X ET(Q)RL o (1 _|_RL)1/4 COS(qTS) ]ﬁ(qu)
with 3
R = Z& baryon loading
Py

. / e at (comoving)

i o a(t)\/3(1+ R(t)) sound horizon

T(q) transfer function



More on temperature anisotropies

There are two effects we have ignored in this approximation.

|. The solutions oscillate around last scattering and the finite
width of the last scattering surface leads to damping.

2.The mean free path of the photons becomes comparable to
the momentum of the modes for large g which leads to Silk
damping.

s . d’q .
off) = it [ S R@Yin(@

57 = gy coslars) | earn)

3 o— Jo £ T(g,t)dt
5



More on temperature anisotropies

Including the Doppler contribution

S . d3q * A
o) = it [ SRV (@

3 e~ fOtL I'(qg,t)dt .
X ET(Q)RL T AT R cos(qrs) | je(qrr)

\/§€— f(fL I'(q,t)dt
(1 + RL)3/4

Sin(qrs)] jé(qm)}

* Since the integral is dominated by ¢ ~ ¢/r , the peak
positions are set by § = r, /r;, which e.g. probes curvature.

* Since R (), the relative height of the peaks is a sensitive
probe of the baryon abundance.

* The damping scale probes the mean free path of the photons
and thus, for example, the Helium abundance.



From eV to Inflation

T0

dk |
(Jgf;w = 4rT2 | =A% (k) / drS\2 (k, 7)je(k(ro — 7))

0




From eV to Inflation

Initial Conditions Late time evolution

\ / “\,

S
Cgc))(,e = 4nT;

/

Physics of Recombination

Geometry



From eV to Inflation

So far, these are initial conditions for the system of
equations that governs the evolution of the universe from

around few keV to the present

In this limit, the system has 5 solutions that do not decay,
one ‘“adiabatic’ solution and 4 |socurv%§&|cﬁgr’hfog(!}el;’lgug(ﬁ(. 1999)

Experimentally, only the adiabatic solution seems excited for
which R is constant.



From eV to Inflation

What generated these perturbations!?

A
k/a

t >
Qrec a

To generate the perturbations causally, they cannot have been
outside the horizon very early on, requiring a phase with

d k <0 o
dt \ alH]| (inflation or bounce)



Inflation

Inflation, a phase of nearly exponential expansion, was
proposed as a solution to the horizon, flatness, monopole
problem.

Horizon problem

; /tr dt N /’fL dt
= a a —
P aiexp(H(E—t) | C ), a(t)

7

This becomes

ar, ag eV BBN1+Zr6N
ap ar H L 14+ 2z, H

dj, =

and dj, > d 4 for sufficiently large N = H(t, — t;)



Inflation

Inflation and the horizon problem

Today

causally connected Last Scattering Surface

Big Bang Surface



Inflation

Inflation and the horizon problem

Today

causally connected Last Scattering Surface

Inflation




Inflation

We know that vacuum energy gives rise to exponential

expansion, but we need this period to end. So we need a
clock

S = /\/—7gd4x [—%gw/aﬂ¢al/§b — V(¢)]

In FLRW

S = /dtdgaj a’ () ng2 -~ 7(V§Z5)2 — V(¢)]

with equation of motion

b+ 3Hop — %v% +V'(¢) =0



Inflation

For a homogeneous field in and FLRWV spacetime the
equation of motion becomes

d+3Hd+ V' () =0

For the field equations we also need the energy density
and pressure

p=¢>+ V(e)
p=¢> V(o)

So the equations of motion can be taken as

87
H2:—7; 0

d+3Hop+V'(p) =0



Inflation

Recall that we are interested in nearly exponential
expansion or nearly constant

H
m < 1
With
H = —47G¢?
This becomes ,
¢2
= < 1
¢* + V()
or
$* < V(o)

In this case p =~ —p as desired.



Inflation

If we want this to be an extended period, we also want

H 6
— | = <1
2HH

OH
The equations of motion are then

= 22V

3HO+V'(¢) =0

This is referred to as single-field slow-roll inflation.



Inflation

Slow roll parameters
H? 2HH

€ —

It is also convenient to introduce

1 [V’
6VZlGWG(V)
| B VA

:87TGV

nv

In the slow-roll approximation

€ R €y 0~ —ny — €y



Inflation

The inflaton is a quantum field and fluctuates

The claim is that the quantum fluctuations in this
field are the source of primordial perturbations

604
¢

To compute the spectrum, we canonically quantize

Ry = —

The quadratic action for the fluctuations schematically is

S = / dtd*z a>(t [ 5% — L(V(Sgb)Q — %V”(gb)&gbZ

2a2



Inflation

As usual, we expand the field in creation annihilation
operators

5¢(t,x):/(;iﬂc)]3 Sy (t)e' ™ a(q) + h.c.]

so that the mode functions obey

oo . 2
56 + 3HSG + %&b ~ 0

Oscillatory at early times, constant at late times.



Inflation

For
la(q),a’(q)] = (27)%6(q — q)

the field then obeys canonical commutation relations if at
early times the positive frequency modes approach

B t

1 , dt’
36,(t) = e | —ia | 2

b

and it is typically assumed that the modes are in the
Bunch-Davies state

a(q)]|0) =0



Inflation

lgnoring slow-roll corrections, we can give the mode
function in terms of elementary functions

H (1 1 -
e T iq/aH
sou) = 75z (5 +am)

This has the correct limit at early times, and approaches

1 H
5¢q (t) ? \/§q3/2

at late times so
H? H?

;223
& q

Rql* =



Inflation

This formula remains correct if we keep the slow-roll
corrections provided we evaluate it at horizon crossing

H? H*

-2 203
q
¢ q=aH

Rql* =

Frequently one uses A% (q) defined by

A% (q)
q3

’Rq|2 = 2m?

Explicitly in terms of slow-roll parameters

AZ,(g) = AR (g.) (i)

with
ne = 1 — 4e, — 20,



B-mode search

Just like the inflaton, the graviton fluctuates. The
corresponding power spectrum is

a3(k) = 2L

T2

A measurement of the tensor contribution would provide a
direct measurement of the expansion rate of the universe
during inflation, as well as the energy scale

1/4
VA4 Z 1.06 x 10 GeV (L)
inf 8 V001

A

with T = A—%



B-mode search

In addition to the density perturbations, inflation also
predicts a nearly scale invariant spectrum of gravitational
waves

Lo q T A
A1)+ gy [+ DATY (00— (AT (0.1

~

= (~2D,(1) + we()¥(a.1)) br0 — we(DAL) (g, 1)

~ q ~ X
AG)(q.t) + ETEY [(6 + DA (a,t) — LAL)_(q, t)}

— —wo(£)U(q, ) 5,0 — we()AT) (g, 1)

with
1 T ]. ~ (T 3 (T
W(g,t) = AT 1) + ?NT,;(q,t) - mA(Ti(q,t)
3 . . T
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Tensor-to-scalar ratio (rp.om)
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B-mode search
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B-mode search
Stage lll: now-2020

POLARBEAR/
Simons Array

ABS
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B-mode search
Stage IIl.5: soon-2020
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B-mode search
Stage IV: 2020-2030

Potentially Space Missions

LiteBIRD, PIXIE



B-mode search

CMB-54 would detect r=0.01 at high significance

CMB-S4 Science Book (http://www.cmbs4.org)

0.1F v — — CMB-S4 .
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B-mode search

Potential of a future space mission
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Beyond B-modes

* The CMB provides a unique opportunity to study
the physics of the universe

* at the time when Hydrogen forms
* through lensing at much later times

e and at much earlier times when the
perturbations were generated

e Polarization measurements on small scales can
provide tight constraints on light relics, neutrinos, ...



Beyond the CMB

* Galaxy redshift surveys similarly provide a wealth of
information about our universe




Beyond the CMB

* Some of the biggest questions remain

* How was the baryon asymmetry generated!?
* What is dark matter?

* What is dark energy!?

* How were the primordial fluctuations
generated!

* Many new experiments are beginning to take data
and will perhaps shed more light



Thank you



